Translations:Grounding system/8/en

From Open Source Solar Project
Revision as of 08:54, 15 February 2021 by FuzzyBot (talk | contribs) (Importing a new version from external source)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Component Function
(1) Grounding electrode The connection point between the earth and the electrical system. It is important that a grounding electrode have sufficient surface area in contact with the earth in order to establish a good connection. There are many different types of grounding electrodes - copper rods, steel rods, copper plates, the metallic pipes of a building, or a proper connection to the rebar used in the foundation of a building. The appropriate grounding electrode will vary based upon the electrical code, building and soil type.
(2) Grounding electrode conductor (GEC) The connection that runs from the grounding electrode to the location of the rest of the electrical equipment - typically a wire that runs from the grounding electrode to a grounding busbar in the main distribution panel.
(3) Equipment grounding conductor (EGC) The connection that runs from the grounding busbar in the main service panel to all of the non-current carrying metallic components of a system (conduit, inverter housing, charge controller housing, enclosures, etc.).
(4) DC system ground The connection between a DC current carrying conductor in an electrical system and the grounding electrode conductor - commonly made through a ground fault protection device.
(5) AC system ground The connection between an AC current carrying conductor in an electrical system and the grounding electrode conductor - typically made immediately after the inverter output at a busbar used for the inverter output circuit or in the main distribution panel. The connection is made from the main grounding busbar to the busbar of the grounded conductor. There are some inverters that come with a pre-established internal system ground, for example any that come with an integrated ground fault protection device (GFPD). A second system ground should not be created; if there is more than one the grounding system will not function properly.