Tipos de electricidad

From Open Source Solar Project
Revision as of 14:17, 8 February 2021 by Alex (talk | contribs) (Created page with "==Corriente alterna==")
Jump to navigation Jump to search
Other languages:
English • ‎español
Flujo de electrones en una sección transversal de cable:
Arriba - En un circuito de corriente continua, los electrones solo fluyen en uno dirección de positivo a negativo.
Abajo - En un circuito de corriente alterna, los electrones fluyen en ambas direcciones como alternancia positiva y negativa.
Voltaje a lo largo del tiempo:
Rojo - La corriente continua mantiene un voltaje constante. (rojo)
Azul - La corriente alterna cambia de un lado a otro.

Hay dos tipos de electricidad: corriente alterna (CA) y corriente continua (CC). Estos dos términos describen la forma en que fluye la corriente en un circuito. En un circuito de CC, la corriente fluye en una sola dirección, lo que significa que este tipo de circuito tiene un positivo (+) y un negativo (-) que no cambian. Esta relación de carga positiva a negativa se conoce como polaridad. En un circuito de corriente alterna, el flujo de corriente cambia de dirección regularmente, cambiando la polaridad (positiva (+) y negativa (-)) cada vez. Este cambio de polaridad hacia adelante y hacia atrás en un circuito de corriente alterna se llama frecuencia y se mide en hercios (Hz). La polaridad en un circuito de CA típico cambia entre 50 y 60 veces por segundo, lo que significa que el circuito tiene una frecuencia de 50 a 60 Hz.

En cualquier sistema eléctrico, ya sea de CA o CC, todos los componentes o aparatos deben estar clasificados para funcionar con las características del sistema eléctrico: voltaje, corriente y frecuencia si es de CA. Si se usan incorrectamente, puede provocar una falla que resulte en un incendio o lesiones.

Corriente directa

Los módulos FV solo pueden producir CC, por lo que todos los sistemas FV tienen al menos un circuito de CC. Todo los sistema que usa una batería, incluidos los sistemas fotovoltaicos, se basará en CC, ya que las baterías solo pueden almacenar energía en forma de CC. Alimentar una carga directamente desde CC evita el paso de tener que usar un inversor para convertir de CC a CA, lo que puede generar pérdidas de más del 10% en el proceso. Muchos sistemas de escala pequeños son solo de CC y funcionan bien para los rayos y la carga de dispositivos electrónicos pequeños como teléfonos celulares.

Corriente alterna

In alternating current (AC) circuits the voltage goes through a cycle as positive and negative change many times each second, which causes the current to change its direction of flow. The voltage of an AC circuit can be represented as a wave on a graph (the graphic at right depicts on full AC cycle). It is important to note that when measuring the voltage of AC circuits with a multimeter the reading will always appear positive because it is calculated using a method called root mean square that results in negative values being treated as positive values in order to be able to create a comparison to DC. The brief negative cycles are included into this calculation. The voltage during one of these cycles can be graphically depicted as a sine wave for off-grid PVs systems that have a pure sine wave inverter.

The grid is almost entirely built to function with alternating current, although the voltage, frequency and number of wires in a supply circuit varies around the world. Nearly all electronic devices - cell phones, radios, computers and televisions - run on DC internally, but they incorporate electronics to convert from AC to DC in order to function with the grid. Appliances with motors or compressors - refrigerators, fans, and tools - have motors that can run directly on alternating current. Most countries use different voltages for different service types (residential, commercial, industrial). Some countries also have voltages and frequencies that vary based upon location as the grid has not been standardized. The wiring configuration - two-wire single phase (L1, N), three-wire single phase (L1, L2, N), three phase (L1, L2, L3) - can vary for the same voltage from country-to-country as well. Three phase services are typically used for commercial and industrial applications as they run motors more smoothly and can supply more current at the same voltage compared to non-three phase services. See Voltage and frequency by country for the voltage and frequency for specific countries.

AC or DC?

If so many appliances internally function on DC, why not just use direct current for every circuit then? Each one has different characteristics that make it useful for certain applications. AC has important properties that make it useful in the electrical grid. It is cheaper to transmit AC over long distances as it is easier to change between high and low voltages. High voltages are ideal for long distance transmission as they require less current, which means you can use smaller wires. DC works well in off-grid applications as PV modules produce DC and batteries store energy in DC, meaning that using AC appliances requires the added expense and loss of efficiency that come with an inverter.