Electricidad y energía
Electricidad parece que está por todas partes: fluye en nuestros cuerpos para alimentar nuestros corazones, los rayos constantemente caen sobre la tierra a aproximadamente 100 descargas por segundo [1] y la mayoría de las fabricas y oficinas del mundo funcionan con electricidad. Pero solo parece que está en todas partes, aún hay casi mil millones de personas sin acceso a la electricidad en todo el mundo, mayormente en comunidades rurales. El problema principal siempre ha sido que la electricidad siempre se producía en unos pocos lugares seleccionados y luego se distribuía desde allí en una red eléctrica a hogares y negocios, cuya expansión puede ser muy costosa. A pesar de que ni siquiera llega a todos en el planeta, la red eléctrica provoca importantes daños ambientales que afectan a todos.
Sistemas FV pueden ayudar a solucionar ambos problemas: aceso a la energía y la contaminación que produce las fuentes de energía non-renovables como carbón. Sistemas FV conectados a la red se puede utilizar para ayudar a reducir los impactos ambientales del uso de electricidad y sistemas FV autónomos puede ayudar a proporcionar energía a áreas donde la red no llega, ya que pueden producir, almacenar y proporcionar energía en forma de electricidad incluso en los lugares más remotos.
Un sistema FV debe diseñarse para que coincida con las características del sistema eléctrico en la zona y las necesidades energéticas del usuario final. No solo los diseñadores e instaladores de sistemas autónomos deben comprender a fondo la electricidad y la energía, sino también los usuarios para asegurarse de que no dañen su sistema al usarlo más allá de sus capacidades. Los principales conceptos que es necesario comprender son:
- La corriente
- El voltaje
- La resistencia
Estos son los componentes básicos de incluso los sistemas eléctricos más complejos.
Contents
¿Que es la electricidad?
La electricidad es una fuerza creada a partir del componente básico de toda la materia: los átomos. Todos los átomos están compuestos por tres componentes principales: neutrones (sin carga), protones (carga positiva) y electrones (carga negativa). De estos tres, el único que puede moverse libremente de un átomo a otro es el electrón (carga negativa). Los electrones pueden acumularse en concentraciones más altas en algunos lugares y crear una carga negativa general. O puede haber una falta de electrones, lo que crea una carga positiva general. Los electrones desean fluir desde áreas de alta concentración de electrones a áreas de baja concentración de electrones. No todos los átomos o materiales tienen electrones libres que puedan moverse fácilmente como la madera, el plastico o las piedras. A estos los llamamos aislantes. Los metales y el cobre son buenos conductores, ya que tienen abundantes electrones libres.
Las pequeñas descargas eléctricas estáticas que recibimos de nuestra ropa son el resultado de una diferencia en electrones de su cuerpo y la prenda de ropa; esta diferencia es "voltaje". A medida que los electrones pasan de su cuerpo a esa prenda de ropa, se crea una "corriente".
Circuitos
La electricidad estática y los rayos no son útiles para la humanidad ya que no están en sistemas controlados. La electricidad debe estar contenida dentro de un sistema eléctrico compuesto por circuitos para que se use de manera adecuada y segura. Un circuito eléctrico básico es un circuito cerrado construido con lo siguiente: 1. Una fuente de energía que tiene o puede crear un desequilibrio de electrones entre dos puntos, que es el voltaje. 2. Material conductor, como cables, que permite que los electrones fluyan desde áreas de alta concentración a áreas de baja concentración. Este flujo es la corriente. 3. Una carga o algún medio para restringir el flujo de electrones. Sin una carga o alguna forma de restringir el flujo de electrones, la diferencia de electrones creada por la fuente de energía llegará rápidamente a cero.
Los circuitos pueden estar en varios estados:
- 'Cerrado:' Conectado, encendido, funcionando. Un circuito correctamente conectado con una carga que tiene corriente fluyendo.
- 'Abierto:' Desconectado, apagado, deshabilitado. Un circuito que no está conectado o apagado y que no tiene corriente.
- 'Corto:' Falla, conexión incorrecta de baja resistencia. Un circuito que se ha construido incorrectamente sin suficiente resistencia, como una carga, para restringir el flujo de corriente. Un circuito en estado de cortocircuito permitirá que fluya tanta corriente como sea posible hasta que se agote la fuente de alimentación. Si una carga está conectada en paralelo con un cortocircuito, como en el diagrama, la carga puede dejar de funcionar debido a voltaje / corriente insuficiente.
<anchos de galería = 250px>
Closedcircuit.png|Circuito cerrado:
Un circuit que está funcionando correctamente. Los electrones fluyen y la bombilla está encendida.
Opencircuit.png |Circuito abierto:
Un circuito que está desconectado, posiblemente debido a un interruptor, sin que fluyan electrones.
Shortcircuit.png |Cortocircuito:
Un circuito que funciona incorrectamente con una ruta de baja resistencia para que fluya la corriente. El voltaje cae casi a cero cuando los electrones toman el camino de baja resistencia.
</galeria>
Characteristics of electricity
Electricity is almost always invisible, but flowing water enables us to create good comparisons and make the concept understandable. A circuit with a battery - like in the previous graphic - operates at a certain voltage and current, similarly a basic hydraulic system operates with a certain pressure and volume.
- The voltage in the electrical circuit is similar to the pressure in the hydraulic system.
- The current in the electrical circuit is similar to the flow in the hydraulic system.
- The wires in the electrical circuit and the load create resistance. The pipes and sprinkler in the final graphic also create friction.
Voltage
Voltage is the force that moves electrons in a circuit and is measured in volts (V). It can be thought of as electrical pressure and in a circuit with a battery the voltage is determined by the amount of energy stored in the battery. Voltage is similar to the pressure created in the hydraulic system. It depends upon the amount of water in the water that it holds.
Current
Current is the flow of electrons in a circuit and is measured in amperes or amps (A). Current is similar to the volume of water flowing in the hydraulic system. It depends upon the amount of water permitted to flow by the valve and upon the pressure in the system.
Resistance
Resistance (R) is a resistance to current that is present in all materials and all electrical systems and it is measured in Ohms (Ω). If the wires in an electrical circuit are too small for the amount of current that they need to carry, it will create friction and heat. Voltage is lost as a result. Similarly, the pipes through which the water flows in the hydraulic system can create friction if there is too much pressure or volume trying to pass through them.
Power: watts
Power (P) is a measurement of work done in a unit of time. How much electricity is being consumed, which is power, in an electric circuit depends upon both the voltage and the current of the circuit. In electrical systems power is measured in watts (W) A watt is a measure of the energy produced or consumed in one second. Power is also commonly expressed in kW (1 kW = 1000 W) and MW (1 MW = 1,000,000 W) in larger systems. Similarly, if water flowing from the hydraulic system is used to perform work, like spinning a wheel, the power that is used will depend upon both the volume and the pressure of the water supplied. An inefficient load in an electrical system or hydraulic system will consume more power than an efficient one.
The formula for calculating power in an electrical system is:
Power (P) | = voltage (V) × current (I) |
---|
The same amount of power can be generated with by using varying amounts of voltage and current. For example:
- 1000 watts = 10 volts × 100 amps
- 1000 watts = 100 volts × 10 amps
The equation can also be rearranged to solve for missing variables. If you have any two of the three variables (P, V, I), then you can solve for the third. For example:
Example 1: A cell phone is plugged into to charge. It is connected to a 12V battery and there is 1A of current flowing. How much power is being consumed?
- P = 12 V × .5 A
- W = 6 W
Example 2: A television is using 48 W of power. The battery that it is connected to has a voltage of 12 V. How much current (I) is flowing?
- 48 W = 12 V x I
- I = 48 W ÷ 12 V
- I = 4 A
Example 3: A small water pump is being used to fill a tank. The pump is a 440 W pump and there are 2 A of current flowing. What is the voltage of the system?
- 440W = V × 2 A
- V = 440 W ÷ 2 A
- V = 220 V
Energy: watt-hours
Power is a quick look at how much energy is being consumed or produced. For an electrical system this is an important value, but it is equally important to understand power consumption over time. Energy consumption over time is measured in watt-hours (Wh) or kilo-watt-hours (kWh). A watt-hour is the consumption of 1W of power for 1 hour. The formula for calculating Watt-hours is simple:
Watt-hours (Wh) | = power (P) × time in hours (t) |
---|
- Time in hours can be a fraction or percentage if necessary.
Example 1: A radio is plugged in and plays music for 3 hours. The radio says on the back that it consumes 7 W of power.
- Wh = 7 W × 3 hours
- Wh = 21 Wh
Example 2: The motor on a fan says that it requires 60 W. The fan is left on during the night for 12 hours.
- Wh = 60 W × 12 hours
- Wh = 720 Wh
Notes
- ↑ Frecuencia de relámpagos de la NOAA. https://sos.noaa.gov/datasets/lightning-flash-rate/