Detailed DC system design
Jump to navigation
Jump to search
Location: Pampachiri, Apurimac, Peru
GPS coordinates: 14°11'37.65"S 73°32'31.73"W
Altitude: 3378m
Description: A two story adobe home in the Peruvian Andes with only DC power needs.
Contents
DC load evaluation
# | Load | Quantity | Watts | Total watts | Duty cycle | Hours per day | Days per week | Average daily DC watt-hours |
---|---|---|---|---|---|---|---|---|
1 | Cree 5 W LED | 6 | 5 W | 30 W | 1 | 3 hours | 7 days | 90 Wh |
2 | Retekess radio | 6 W | 1 | 6 W | 1 | 5 hours | 7 days | 30 Wh |
3 | Samsung cell phone | 2 | 10 W | 20 W | 1 | 1 hour | 7 days | 20 Wh |
Total average daily DC watt-hours | 140 Wh |
- Load: The make and model or type of load.
- Quantity: The number of of that particular load.
- Watts: The power rating in watts of the load.
- Total watts = Quantity × Watts
- Duty cycle = Rated or estimated duty cycle for the load. If the load has no duty cycle a value of 1 should be used. A load with a duty cycle of 20% would be inputted as .2
- Hours per day: The maximum number of hours the load(s) will be operated per day. If the load has a duty cycle 24 hours should be used.
- Days per week: The maximum number of days the load(s) will be operated per week.
- Average daily DC watt-hours = Total watts × Duty cycle × Hours per day × Days per week ÷ 7 days
- Total average daily DC watt-hours = sum of Average daily DC watt-hours for all loads
Average daily watt-hours required
Average daily watt-hours required | = Total average daily DC watt-hours + Total average daily AC watt-hours |
---|---|
Average daily watt-hours required | = 140 Wh |
Weather and solar resource evaluation
Maximum ambient temperature = 23°C
Minimum ambient temperature = 2°C
Minimum indoor temperature = 10°C
Load and solar resource comparison
Month | Average daily insolation | Average daily Watt-hours required | Ratio |
---|---|---|---|
January | 193.85 kWh/m² / 30 = 6.46 kWh/m² | 140 Wh | 21.67 |
February | 162.2 kWh/m² / 30 = 5.41 kWh/m² | 140 Wh | 25.90 |
March | (179.81 kWh/m² / 30 = 6.00 kWh/m² | 140 Wh | 23.36 |
April | 174.98 kWh/m² / 30 = 5.83 kWh/m² | 140 Wh | 24.00 |
May | 214.31 kWh/m² / 30 = 7.14 kWh/m² | 140 Wh | 19.60 |
June | 200.05 kWh/m² / 30 = 6.67 kWh/m² | 140 Wh | 20.10 |
July | 210.35 kWh/m² / 30 = 7.01 kWh/m² | 140 Wh | 19.97 |
August | 229.96 kWh/m² / 30 = 7.67 kWh/m² | 140 Wh | 18.26 |
September | 126.87 kWh/m² / 30 = 4.23 kWh/m² | 140 Wh | 33.10 |
October | 214.82 kWh/m² / 30 = 7.16 kWh/m² | 140 Wh | 19.55 |
November | 212.91 kWh/m² / 30 = 7.10 kWh/m² | 140 Wh | 19.73 |
December | 176.98 kWh/m² / 30 = 5.90 kWh/m² | 140 Wh | 23.73 |
- Month: The month of the year.
- Average daily insolation: Solar resource data from PVGIS.
- Average daily Watt-hours required from load evaluation.
- Ratio = Average daily Watt-hours required ÷ Average daily insolation