Load and solar resource comparison

From Open Source Solar Project
Revision as of 14:31, 1 April 2021 by FuzzyBot (talk | contribs) (Updating to match new version of source page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Other languages:

The design process for an off-grid PV system should use conservative, worst-case values to ensure that the system is capable of meeting the energy needs of users throughout the year. There are many locations that have a significant seasonal variance in solar resource due to poor weather or latitude. Many off-grid PV systems will see a significant variance in how loads are used throughout the year, especially in locations that are only seasonally occupied. These two different factors - load usage vs. solar resource - make it important to determine what month to use in the system design as the worst-case scenario. An analysis of loads and usage could be performed on a monthly basis, but the most drastic shift in usage likely occurs between the major seasons in a given region meaning two times per year. Determining the worst-case month can be done using a simple table and a quick calculation using monthly insolation data and Average daily Wh estimates for the two different time periods October - March and April - September. The two following values used for the design should be chosen from the month with the highest ratio of average daily watt-hours relative to average monthly insolation:

  • Design daily insolation
  • Design daily watt-hours required

Step 1: Determine monthly ratio of energy demand to solar resource

Month Average monthly insolation (kWh/m²) Total average daily energy demand (Wh) Ratio
January
February
March
April
May
June
July
August
September
October
November
December
  • Month: The month of the year.
  • Ratio = Total average daily energy demand ÷ Average monthly insolation

Step 2: Determine design values

Design daily insolation = Average monthly insolation (kWh/m²) from month with the highest ratio ÷ 30
Design daily watt-hours required = Total average daily energy demand (Wh) from month with the highest ratio

Notes/references