Export translations
Jump to navigation
Jump to search
Settings
Group
About OSSP
Basic stand-alone PV system components
Battery wiring
Busbar
Charge controller
Charge controller programming
Combiner box
Commissioning
Conductor size
Conductor types
Conduit
Continuous duty safety parameter
DC system voltage
DC-DC converter
Design parameter overview
Design process overview
DIN rail
Disconnect
Distribution panel
Duty cycle
Electrical codes
Electrical safety
Electricity and energy
Electricity types
Energy efficient loads
Energy storage
Energy storage sizing and selection
Equipment certification
Equipment clearances and safe working space
Ground fault protection device
Grounding system
Insolation
Installing module connectors
Insulation color
Inverter
Inverter programming
Irradiance safety parameter
Junction box
Labeling
Lead acid battery
Lighting
Lithium-ion battery
Load and solar resource comparison
Load evaluation
Low voltage disconnect
Low voltage disconnect parameter
Main Page
Module connectors
Mounting system types
Multimeters
OSSP stand-alone system design tool
Outlet
Overcurrent protection device
Peru
Physical evaluation
Power factor
Power flow between components
Principles of installation
PV module
PV source and charge controller sizing and selection overview
PV system types
Residual current device
Resources
Series and parallel connections
Shading
Shunt
Simplified energy storage sizing and selection
Simplified load evaluation
Simplified minimum PV source size
Simplified MPPT charge controller sizing and selection
Simplified physical evaluation
Simplified PWM charge controller sizing and selection
Simplified weather and solar resource evaluation
Site evaluation process overview
Stand-alone system configurations
Surge loads
Switch
Tilt and azimuth
Training providers
Troubleshooting
Twist-on wire connector
United States
Voltage and frequency by country
Voltage drop
Weather and solar resource evaluation
Weather rating
What is an off-grid PV system?
Wire terminal
Wiring basic load circuits
Wiring practices
Language
aa - Afar
ab - Abkhazian
abs - Ambonese Malay
ace - Achinese
ady - Adyghe
ady-cyrl - Adyghe (Cyrillic script)
aeb - Tunisian Arabic
aeb-arab - Tunisian Arabic (Arabic script)
aeb-latn - Tunisian Arabic (Latin script)
af - Afrikaans
ak - Akan
aln - Gheg Albanian
am - Amharic
an - Aragonese
ang - Old English
anp - Angika
ar - Arabic
arc - Aramaic
arn - Mapuche
arq - Algerian Arabic
ary - Moroccan Arabic
arz - Egyptian Arabic
as - Assamese
ase - American Sign Language
ast - Asturian
atj - Atikamekw
av - Avaric
avk - Kotava
awa - Awadhi
ay - Aymara
az - Azerbaijani
azb - South Azerbaijani
ba - Bashkir
ban - Balinese
bar - Bavarian
bbc - Batak Toba
bbc-latn - Batak Toba (Latin script)
bcc - Southern Balochi
bcl - Central Bikol
be - Belarusian
be-tarask - Belarusian (Taraškievica orthography)
bg - Bulgarian
bgn - Western Balochi
bh - Bhojpuri
bho - Bhojpuri
bi - Bislama
bjn - Banjar
bm - Bambara
bn - Bangla
bo - Tibetan
bpy - Bishnupriya
bqi - Bakhtiari
br - Breton
brh - Brahui
bs - Bosnian
btm - Batak Mandailing
bto - Iriga Bicolano
bug - Buginese
bxr - Russia Buriat
ca - Catalan
cbk-zam - Chavacano
cdo - Min Dong Chinese
ce - Chechen
ceb - Cebuano
ch - Chamorro
cho - Choctaw
chr - Cherokee
chy - Cheyenne
ckb - Central Kurdish
co - Corsican
cps - Capiznon
cr - Cree
crh - Crimean Turkish
crh-cyrl - Crimean Tatar (Cyrillic script)
crh-latn - Crimean Tatar (Latin script)
cs - Czech
csb - Kashubian
cu - Church Slavic
cv - Chuvash
cy - Welsh
da - Danish
de - German
de-at - Austrian German
de-ch - Swiss High German
de-formal - German (formal address)
din - Dinka
diq - Zazaki
dsb - Lower Sorbian
dtp - Central Dusun
dty - Doteli
dv - Divehi
dz - Dzongkha
ee - Ewe
egl - Emilian
el - Greek
eml - Emiliano-Romagnolo
en - English
en-ca - Canadian English
en-gb - British English
eo - Esperanto
es - Spanish
es-419 - Latin American Spanish
es-formal - español (formal)
et - Estonian
eu - Basque
ext - Extremaduran
fa - Persian
ff - Fulah
fi - Finnish
fit - Tornedalen Finnish
fj - Fijian
fo - Faroese
fr - French
frc - Cajun French
frp - Arpitan
frr - Northern Frisian
fur - Friulian
fy - Western Frisian
ga - Irish
gag - Gagauz
gan - Gan Chinese
gan-hans - Gan (Simplified)
gan-hant - Gan (Traditional)
gcr - Guianan Creole
gd - Scottish Gaelic
gl - Galician
glk - Gilaki
gn - Guarani
gom - Goan Konkani
gom-deva - Goan Konkani (Devanagari script)
gom-latn - Goan Konkani (Latin script)
gor - Gorontalo
got - Gothic
grc - Ancient Greek
gsw - Swiss German
gu - Gujarati
gv - Manx
ha - Hausa
hak - Hakka Chinese
haw - Hawaiian
he - Hebrew
hi - Hindi
hif - Fiji Hindi
hif-latn - Fiji Hindi (Latin script)
hil - Hiligaynon
ho - Hiri Motu
hr - Croatian
hrx - Hunsrik
hsb - Upper Sorbian
ht - Haitian Creole
hu - Hungarian
hu-formal - magyar (formal)
hy - Armenian
hyw - Western Armenian
hz - Herero
ia - Interlingua
id - Indonesian
ie - Interlingue
ig - Igbo
ii - Sichuan Yi
ik - Inupiaq
ike-cans - Eastern Canadian (Aboriginal syllabics)
ike-latn - Eastern Canadian (Latin script)
ilo - Iloko
inh - Ingush
io - Ido
is - Icelandic
it - Italian
iu - Inuktitut
ja - Japanese
jam - Jamaican Creole English
jbo - Lojban
jut - Jutish
jv - Javanese
ka - Georgian
kaa - Kara-Kalpak
kab - Kabyle
kbd - Kabardian
kbd-cyrl - Kabardian (Cyrillic script)
kbp - Kabiye
kg - Kongo
khw - Khowar
ki - Kikuyu
kiu - Kirmanjki
kj - Kuanyama
kjp - Eastern Pwo
kk - Kazakh
kk-arab - Kazakh (Arabic script)
kk-cn - Kazakh (China)
kk-cyrl - Kazakh (Cyrillic script)
kk-kz - Kazakh (Kazakhstan)
kk-latn - Kazakh (Latin script)
kk-tr - Kazakh (Turkey)
kl - Kalaallisut
km - Khmer
kn - Kannada
ko - Korean
ko-kp - Korean (North Korea)
koi - Komi-Permyak
kr - Kanuri
krc - Karachay-Balkar
kri - Krio
krj - Kinaray-a
krl - Karelian
ks - Kashmiri
ks-arab - Kashmiri (Arabic script)
ks-deva - Kashmiri (Devanagari script)
ksh - Colognian
ku - Kurdish
ku-arab - Kurdish (Arabic script)
ku-latn - Kurdish (Latin script)
kum - Kumyk
kv - Komi
kw - Cornish
ky - Kyrgyz
la - Latin
lad - Ladino
lb - Luxembourgish
lbe - Lak
lez - Lezghian
lfn - Lingua Franca Nova
lg - Ganda
li - Limburgish
lij - Ligurian
liv - Livonian
lki - Laki
lmo - Lombard
ln - Lingala
lo - Lao
loz - Lozi
lrc - Northern Luri
lt - Lithuanian
ltg - Latgalian
lus - Mizo
luz - Southern Luri
lv - Latvian
lzh - Literary Chinese
lzz - Laz
mai - Maithili
map-bms - Basa Banyumasan
mdf - Moksha
mg - Malagasy
mh - Marshallese
mhr - Eastern Mari
mi - Maori
min - Minangkabau
mk - Macedonian
ml - Malayalam
mn - Mongolian
mni - Manipuri
mnw - Mon
mo - Moldovan
mr - Marathi
mrj - Western Mari
ms - Malay
mt - Maltese
mus - Muscogee
mwl - Mirandese
my - Burmese
myv - Erzya
mzn - Mazanderani
na - Nauru
nah - Nāhuatl
nan - Min Nan Chinese
nap - Neapolitan
nb - Norwegian Bokmål
nds - Low German
nds-nl - Low Saxon
ne - Nepali
new - Newari
ng - Ndonga
niu - Niuean
nl - Dutch
nl-informal - Nederlands (informeel)
nn - Norwegian Nynorsk
no - Norwegian
nov - Novial
nqo - N’Ko
nrm - Norman
nso - Northern Sotho
nv - Navajo
ny - Nyanja
nys - Nyungar
oc - Occitan
olo - Livvi-Karelian
om - Oromo
or - Odia
os - Ossetic
pa - Punjabi
pag - Pangasinan
pam - Pampanga
pap - Papiamento
pcd - Picard
pdc - Pennsylvania German
pdt - Plautdietsch
pfl - Palatine German
pi - Pali
pih - Norfuk / Pitkern
pl - Polish
pms - Piedmontese
pnb - Western Punjabi
pnt - Pontic
prg - Prussian
ps - Pashto
pt - Portuguese
pt-br - Brazilian Portuguese
qqq - Message documentation
qu - Quechua
qug - Chimborazo Highland Quichua
rgn - Romagnol
rif - Riffian
rm - Romansh
rmy - Vlax Romani
rn - Rundi
ro - Romanian
roa-tara - Tarantino
ru - Russian
rue - Rusyn
rup - Aromanian
ruq - Megleno-Romanian
ruq-cyrl - Megleno-Romanian (Cyrillic script)
ruq-latn - Megleno-Romanian (Latin script)
rw - Kinyarwanda
sa - Sanskrit
sah - Sakha
sat - Santali
sc - Sardinian
scn - Sicilian
sco - Scots
sd - Sindhi
sdc - Sassarese Sardinian
sdh - Southern Kurdish
se - Northern Sami
sei - Seri
ses - Koyraboro Senni
sg - Sango
sgs - Samogitian
sh - Serbo-Croatian
shi - Tachelhit
shi-latn - Tachelhit (Latin script)
shi-tfng - Tachelhit (Tifinagh script)
shn - Shan
shy-latn - Shawiya (Latin script)
si - Sinhala
simple - Simple English
sk - Slovak
skr - Saraiki
skr-arab - Saraiki (Arabic script)
sl - Slovenian
sli - Lower Silesian
sm - Samoan
sma - Southern Sami
sn - Shona
so - Somali
sq - Albanian
sr - Serbian
sr-ec - Serbian (Cyrillic script)
sr-el - Serbian (Latin script)
srn - Sranan Tongo
ss - Swati
st - Southern Sotho
stq - Saterland Frisian
sty - cебертатар
su - Sundanese
sv - Swedish
sw - Swahili
szl - Silesian
ta - Tamil
tay - Tayal
tcy - Tulu
te - Telugu
tet - Tetum
tg - Tajik
tg-cyrl - Tajik (Cyrillic script)
tg-latn - Tajik (Latin script)
th - Thai
ti - Tigrinya
tk - Turkmen
tl - Tagalog
tly - Talysh
tn - Tswana
to - Tongan
tpi - Tok Pisin
tr - Turkish
tru - Turoyo
ts - Tsonga
tt - Tatar
tt-cyrl - Tatar (Cyrillic script)
tt-latn - Tatar (Latin script)
tum - Tumbuka
tw - Twi
ty - Tahitian
tyv - Tuvinian
tzm - Central Atlas Tamazight
udm - Udmurt
ug - Uyghur
ug-arab - Uyghur (Arabic script)
ug-latn - Uyghur (Latin script)
uk - Ukrainian
ur - Urdu
uz - Uzbek
uz-cyrl - Uzbek (Cyrillic script)
uz-latn - Uzbek (Latin script)
ve - Venda
vec - Venetian
vep - Veps
vi - Vietnamese
vls - West Flemish
vmf - Main-Franconian
vo - Volapük
vot - Votic
vro - Võro
wa - Walloon
war - Waray
wo - Wolof
wuu - Wu Chinese
xal - Kalmyk
xh - Xhosa
xmf - Mingrelian
xsy - Saisiyat
yi - Yiddish
yo - Yoruba
yue - Cantonese
za - Zhuang
zea - Zeelandic
zgh - Standard Moroccan Tamazight
zh - Chinese
zh-cn - Chinese (China)
zh-hans - Simplified Chinese
zh-hant - Traditional Chinese
zh-hk - Chinese (Hong Kong)
zh-mo - Chinese (Macau)
zh-my - Chinese (Malaysia)
zh-sg - Chinese (Singapore)
zh-tw - Chinese (Taiwan)
zu - Zulu
Format
Export for off-line translation
Export in native format
Fetch
{{DISPLAYTITLE:Módulo FV}}[[Category:PV source]] <languages /> [[File:Modulecrosssection201026.png|thumb|right|250px|'''Componentes de un módulo FV:''' <br />''(1)'' Marco de aluminio ''(2)'' Vidrio ''( 3)'' Encapsulante (mantiene las celdas juntas) ''(4)'' Celdas ''(5)'' Encapsulante (mantiene las celdas juntas) ''(6)'' Lámina trasera de plástico ''(7)'' Marco del módulo ''(8)'' Caja de conexiones con cables y conectores]] [[File:Solarcellv22102101.png|thumb|right|250px|Un circuito conectado a una celda FV. Los electrones son energizados por el sol (a través de fotones). Hay una barrera unidireccional en la celda (representada en rojo) que solo permite que los electrones se muevan en una dirección. Cuando comienzan a concentrarse en el lado 1 de la celda, son forzados a pasar por el circuito.]] Los módulos solares fotovoltaicos (FV) utilizan el efecto fotovoltaico para generar corriente eléctrica al exponerse a la luz. Cuando la luz llega a una celda fotovoltaica, se genera una corriente que excita los electrones que luego pasan a través de una barrera o unión unidireccional, lo que los obliga a fluir a través de un circuito para regresar a su punto de origen. El movimiento de estos electrones se puede utilizar para realizar trabajos o alimentar cargas electricas como aparatos y luces. Hay muchas tecnologías diferentes disponibles y formas de diseñar un sistema que pueda satisfacer necesidades que van desde iluminación simple hasta electrodomésticos, bombeo de agua o suministro de energía a las ciudades. PV modules are composed of individual cells wired together in [[Special:MyLanguage/Series and parallel connections|series]] with each one producing around.5 V when exposed to sufficient light. PV modules come in several common configurations: *Un módulo de 36 celdas de ,5 V cada uno. Tiene una voltaje de potencia maxima (Vmp) de 18 V. *Un módulo de 60 celdas de ,5 V cada uno. Tiene una voltaje de potencia maxima (Vmp) de 30 V. *Un módulo de 72 celdas de ,5 V cada uno. Tiene una voltaje de potencia maxima (Vmp) de 36 V. La fuente FV para un sistema autónomo (el módulo FV o los módulos FV en la matriz) deben dimensionarse y seleccionarse junto con el controlador de carga; consulte [[Special:MyLanguage/PV source and charge controller sizing and selection overview|La fuente FV y la selección y dimensionamiento del controlador de carga]] para obtener más información. ==Tipos== [[File:Modules201007.png|thumb|250px|''Izquierda -'' Parte posterior de un módulo FV con especificaciones, caja de conexiones y cableado. <br /> ''Centro -'' Módulo policristalino de 60 celdas con un ejemplo de sus celdas debajo. <br /> ''Derecha -'' Módulo monocristalino de 60 celdas con un ejemplo de sus celdas debajo.]] Hay muchas químicas diferentes que se utilizan en las células FV, pero hay dos categorías principales de módulos que se encuentran en el mercado. Cada tipo de módulo FV sigue teniendo diferentes características que pueden resultar atractivas según las circunstancias, como un precio más bajo o una mayor eficiencia. Los módulos FV se clasifican en términos de eficiencia en la conversión total de luz en electricidad utilizable, una medida que ha ido aumentando lentamente para todos los tipos de módulos a lo largo de los años. En términos más simples, un módulo que tiene una eficiencia del 20% es capaz de convertir el 20% de toda la luz que lo recibe en electricidad. Aumentar la eficiencia en un 3% (del 17% al 20%) puede no parecer mucho, pero dará como resultado un aumento del 17,6% en la producción del módulo fotovoltaico (3% ÷ 17% × 100 = 17,6%). ===Módulos de silicio cristalino=== El tipo de módulo más común en el mercado. Estos módulos pueden venir en construcción poli o monocristalina. Los nombres se derivan de la forma en que se fabrican con células monocristalinas que se cortan de un solo cristal y las células policristalinas están compuestas de silicio de varios cristales. Ambos tipos están compuestos por unos pocos materiales simples (promedio en peso): 76% de vidrio (superficie del panel), 10% de polímero (encapsulante y lámina posterior), 8% de aluminio (principalmente el marco), 5% de silicio (celdas fotovoltaicas), 1% de cobre (interconectores) y menos de 0,1% de plata (líneas de contacto) y otros metales (principalmente estaño y plomo).<ref name="irena"> IRENA End-of-Life Management Solar Photovoltaic Panels. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_IEAPVPS_End-of-Life_Solar_PV_Panels_2016.pdf </ref> *Los módulos monocristalinos son más caros, pero alcanzan eficiencias más altas alrededor del 17-20%. *Los módulos policristalinos son menos costosos y menos eficientes con eficiencias alrededor del 16-17%. ====Variantes de módulos de silicio cristalino==== * Los módulos PERC (emisor pasivado y contacto trasero o celda trasera) tienen una capa adicional que aumenta la eficiencia en alrededor del 21%. El proceso de fabricación es más complicado por lo que son más caros que los módulos básicos. * Los módulos bi-faciales tienen un diseño diferente y carecen de la lámina posterior de polímero blanco (plástico) que la mayoría de los módulos fotovoltaicos tienen para permitirles absorber más luz solar desde la parte trasera. Para instalaciones como [[Special:MyLanguage/Mounting system types|montajes sobre el suelo and montajes en postes]], donde la parte posterior del módulo fotovoltaico está expuesta a luz que puede reflejarse en el suelo u otras superficies, esto puede aumentar la producción entre un 5% y un 30%. El proceso de fabricación es más complicado por lo que son más caros que los módulos básicos. ===Módulos de película delgada=== Los módulos de película delgada se construyen colocando material FV en una o más capas sobre un material de soporte como vidrio, plástico o metal. Los módulos de película delgada vienen en varios tipos, siendo el telururo de cadmio (CdTe) el más común. Los módulos de CdTe contienen mucho menos aluminio y más vidrio que los módulos de silicio cristalino (promedio en peso): 97% de vidrio (superficie del panel), ~ 3% de polímero (cajas de conexiones y sellador) y cantidades insignificantes de semiconductores y metales.<ref name = "irena" /> Los módulos de película delgada son mucho menos eficientes que los módulos de silicio cristalino con una eficiencia de alrededor del 9%, pero significativamente más baratos. ==Condiciones de prueba estándar== [[File:Modulespeclabel -200921-2.png|thumb|right|250px|Una etiqueta de especificaciones típica que se encuentra en la parte posterior de un módulo fotovoltaico.]] Los módulos FV se clasifican en términos de vatios (W) en condiciones de prueba de laboratorio determinadas por la industria denominadas condiciones de prueba estándar (STC). Las tres condiciones son: la fuerza de la luz solar llamada irradiancia, temperatura de las celdas del módulo y la masa de aire. La masa de aire se fija para una ubicación determinada, por lo que juega un papel menos importante que los otros dos. Los módulos fotovoltaicos solo producirán su potencia nominal en su punto de máxima potencia, que es Vmp multiplicado por Imp, en condiciones de prueba estándar de laboratorio. Estas condiciones no se alcanzan con frecuencia en la mayoría de los lugares, ya que las temperaturas de las células aumentan rápidamente cuando se exponen a la luz solar y la irradiación de 1000 W/m² solo se produce cuando el cielo está despejado cerca del mediodía. Por lo tanto, la curva que se muestra en los gráficos anteriores cambiará según las condiciones. Un módulo FV se prueba y se clasifica según los siguientes valores que se pueden encontrar impresos en el módulo o en su hoja de especificaciones: *Tensión de circuito abierto (Voc) - El voltaje que el módulo producirá bajo STC cuando esté en un [[Special:MyLanguage/Electricity and energy#Circuits|circuito abierto]] (desconectado, sin flujo de corriente). * Corriente de cortocircuito (Isc) - La corriente que un módulo producirá bajo STC cuando está [[Special:MyLanguage/Electricity and energy#Circuits|cortocircuito]] (toda la corriente disponible fluyendo casi sin resistencia, por ejemplo cuando se conecta la salida positiva directamente la salida negativa de un módulo FV). *Tensión de potencia máximo (Vmp): El voltaje que producirá el módulo cuando se conecte a un circuito bajo STC. *Corriente de potencia máxima (Imp): La corriente que producirá el módulo cuando se conecte a un circuito bajo STC. *Coeficiente de temperatura de potencia máxima (Tkpmp): Un coeficiente que se puede usar para ajustar la potencia del módulo a los aumentos y disminuciones de temperatura en %/°C o V/°C. *Coeficiente de temperatura de tensión de circuito abierto (Tkvoc): Un coeficiente que se puede usar para ajustar el voltaje del módulo a los aumentos y disminuciones de temperatura en %/°C o V/°C. ===Irradiancia=== [[File:Irradiance - 200921-2.png|thumb|250px| Curva I-V de un módulo FV a medida que disminuye la irradiancia. Cada caída del 25% en la irradiancia representa aproximadamente una caída del 25% en la corriente y la producción.]] La irradiancia es una medida de la intensidad de la luz solar (potencia) que varía constantemente a lo largo del día de forma natural a medida que el sol se mueve por el cielo, pero también debido al clima. La irradiancia medida a lo largo del tiempo se conoce como [[Special:MyLanguage/Insolation|insolación solar]] y es de vital importancia para diseñar sistemas FV y para evaluar el rendimiento de un sistema FV a lo largo del tiempo. En un día despejado, la irradiación alcanzará su punto máximo alrededor del mediodía. 1000 W/m² es un valor de irradiancia para un día despejado alrededor del mediodía, lo que significa que no es probable que sea una condición de funcionamiento normal en la mayoría de los lugares. La irradiancia solo se puede medir con equipos especializados y sensibles, pero se puede estimar ya que la irradiancia tiene una relación directa con la corriente y la potencia que emite el módulo. Los módulos FV reciben sus valores nominales de potencia probándolos a 1000 W/m² de irradiancia bajo condiciones de prueba estándares. La irradiancia por debajo de 1000 W/m² ''reduce'' la corriente de la celda y la irradiancia por encima de 1000 W / m² ''aumenta'' la corriente de la celda. La irradiancia puede aumentar más allá de 1000 W / m² bajo ciertas condiciones geográficas y meteorológicas. La fórmula para calcular la producción basada en la irradiancia es: {| class="wikitable" border=1 style="width: 60%;" ! style="width: 30%"|Factor para ajustar rendimiento por irradiancia ! style="text-align:left;"| = W/m² actual ÷ 1000 W/m² |} '''Ejemplo 1:''' Un módulo FV tiene una potencia nominal de 200 W. La irradiancia se mide a 750 W/m² y la temperatura del módulo FV se mide a 25°C. ¿Qué debería ser el rendimiento del módulo? ::::Factor de pérdida por irradiancia = 750 W / m² ÷ 1000 W / m² = ,75 ::::Potencia ajustada por irradiancia baja = 200 W × ,75 ::::Potencia ajustada por irradiancia baja = 150 W ===Temperatura celular=== [[File:Temperature - 200921.png|thumb|250px|Un diagrama de la curva I-V de un módulo fotovoltaico a medida que fluctúa la temperatura.]] La temperatura celular no es más complicada de lo que parece: es simplemente la temperatura de las celdas del módulo. La temperatura de la celda se puede medir fácilmente y tiene una relación directa con el voltaje. Las temperaturas de la celda por encima de 25°C ''disminuyen'' el voltaje de la celda y las temperaturas de la celda por encima de 25°C ''aumentan'' el voltaje de la celda. Si las temperaturas de la celda son inferiores a 25°C, es posible que a exceda el voltaje de circuito abierto (Voc) nominal del módulo. Las pérdidas debidas al aumento de la temperatura de la celda reducen en gran medida la producción de celdas FV en todas las instalaciones en algún momento. La fórmula para calcular las pérdidas debidas temperaturas altas de la celda es: {| class="wikitable" border=1 style="width: 60%;" ! style="width: 30%"|Factor de perdida de temperatura celular ! style="text-align:left;"| = temperatura celular actual - 25°C × coeficiente de temperatura de potencia máxima (Tkpmp) |} :*TkPmp es un valor de la hoja de especificaciones del módulo y normalmente tiene la forma de %/°C. '''Ejemplo 1:''' Un módulo FV tiene una potencia nominal de 200W. La temperatura de la celda se mide a 35°C. Las especificaciones del módulo indican que tiene un coeficiente de temperatura de potencia máxima (Tkpmp) de -,48%/°C. ¿Qué debería ser el rendimiento del módulo? :::: Factor de pérdida de temperatura celular = 35°C - 25°C × -,48%/°C :::: Factor de pérdida de temperatura celular = -4,8%. La producción será del 95,2% de la energía STC. :::: Potencia ajustada para altas temperaturas = 200 W × .952 :::: Potencia ajustada para altas temperaturas = 190,4 W ===Masa de aire=== La masa de aire es una medida de la cantidad de atmósfera que debe atravesar la luz del sol antes de llegar al módulo FV. Varía globalmente, pero no es relevante aquí, ya que no es un factor que varíe significativamente para una ubicación determinada de un año a otro. ==Vida estimada== Un módulo FV de silicio bien hecho seguirá funcionando durante 25 años, aunque todos los módulos se degradan con el paso del tiempo. Los módulos de alta calidad se degradan a una tasa promedio de ,5% a 1% por año, mientras que los módulos mal hechos se degradan aún más rápido. Ésta es la principal diferencia entre los diferentes costos y calidades de los módulos. ==Mantenimiento== Los módulos FV están construidos con materiales duraderos y no tienen partes móviles. El único mantenimiento que probablemente necesite un módulo FV es una limpieza de vez en cuando si el módulo se encuentra en un área que carece de lluvias regulares. ==Reciclabilidad== Las clasificaciones de desechos de los módulos FV varían significativamente según el lugar, pero independientemente del país, deben tratarse como desechos especializados y no deben desecharse con la basura normal. El proceso de reciclaje de un módulo FV consiste en descomponerlo en sus componentes principales y luego enviarlos a través de las cadenas de reciclaje adecuadas. Desafortunadamente, en muchas áreas donde se utiliza la energía FV para facilitar el acceso a la energía, no hay regulaciones suficientes y, por lo tanto, una falta total de mercado e infraestructura para manejar los residuos de los módulos fotovoltaicos. *La mayoría de los módulos FV instalados en todo el mundo son de silicio cristalino (módulos c-Si) que, en promedio, están compuestos por aproximadamente un 90% de materiales no peligrosos en masa <ref name = "irena" /> - vidrio, aluminio y polímero - que se reciclan o eliminan con relativa facilidad. Aproximadamente el 85% de un módulo se puede reciclar <ref name = "irena" />. El problema es el otro 10% de un módulo fotovoltaico que incluye las células fotovoltaicas que pueden contener plata, estaño, plomo y otros elementos <ref name = "irena" />. El reciclaje adecuado de estas partes del módulo requiere un manejo y procesos especializados. *Los módulos de película delgada representan una porción más pequeña de los módulos fotovoltaicos utilizados en instalaciones a nivel mundial y consisten aproximadamente en un 98% de materiales no peligrosos como vidrio, polímero, aluminio y cobre. Desafortunadamente, el otro 2% de los módulos de película delgada contienen varios materiales peligrosos como indio, galio, selenio, telurio de cadmio y plomo <ref name = "irena" />. El reciclaje adecuado de estas partes del módulo requiere un manejo y procesos especializados. ==Notas/referencias== <references/>
Navigation menu
Personal tools
English
Create account
Log in
Namespaces
Special page
Variants
Views
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
Special pages
Printable version