Export translations
Jump to navigation
Jump to search
Settings
Group
About OSSP
Basic stand-alone PV system components
Battery wiring
Busbar
Charge controller
Charge controller programming
Combiner box
Commissioning
Conductor size
Conductor types
Conduit
Continuous duty safety parameter
DC system voltage
DC-DC converter
Design parameter overview
Design process overview
DIN rail
Disconnect
Distribution panel
Duty cycle
Electrical codes
Electrical safety
Electricity and energy
Electricity types
Energy efficient loads
Energy storage
Energy storage sizing and selection
Equipment certification
Equipment clearances and safe working space
Ground fault protection device
Grounding system
Insolation
Installing module connectors
Insulation color
Inverter
Inverter programming
Irradiance safety parameter
Junction box
Labeling
Lead acid battery
Lighting
Lithium-ion battery
Load and solar resource comparison
Load evaluation
Low voltage disconnect
Low voltage disconnect parameter
Main Page
Module connectors
Mounting system types
Multimeters
OSSP stand-alone system design tool
Outlet
Overcurrent protection device
Peru
Physical evaluation
Power factor
Power flow between components
Principles of installation
PV module
PV source and charge controller sizing and selection overview
PV system types
Residual current device
Resources
Series and parallel connections
Shading
Shunt
Simplified energy storage sizing and selection
Simplified load evaluation
Simplified minimum PV source size
Simplified MPPT charge controller sizing and selection
Simplified physical evaluation
Simplified PWM charge controller sizing and selection
Simplified weather and solar resource evaluation
Site evaluation process overview
Stand-alone system configurations
Surge loads
Switch
Tilt and azimuth
Training providers
Troubleshooting
Twist-on wire connector
United States
Voltage and frequency by country
Voltage drop
Weather and solar resource evaluation
Weather rating
What is an off-grid PV system?
Wire terminal
Wiring basic load circuits
Wiring practices
Language
aa - Afar
ab - Abkhazian
abs - Ambonese Malay
ace - Achinese
ady - Adyghe
ady-cyrl - Adyghe (Cyrillic script)
aeb - Tunisian Arabic
aeb-arab - Tunisian Arabic (Arabic script)
aeb-latn - Tunisian Arabic (Latin script)
af - Afrikaans
ak - Akan
aln - Gheg Albanian
am - Amharic
an - Aragonese
ang - Old English
anp - Angika
ar - Arabic
arc - Aramaic
arn - Mapuche
arq - Algerian Arabic
ary - Moroccan Arabic
arz - Egyptian Arabic
as - Assamese
ase - American Sign Language
ast - Asturian
atj - Atikamekw
av - Avaric
avk - Kotava
awa - Awadhi
ay - Aymara
az - Azerbaijani
azb - South Azerbaijani
ba - Bashkir
ban - Balinese
bar - Bavarian
bbc - Batak Toba
bbc-latn - Batak Toba (Latin script)
bcc - Southern Balochi
bcl - Central Bikol
be - Belarusian
be-tarask - Belarusian (Taraškievica orthography)
bg - Bulgarian
bgn - Western Balochi
bh - Bhojpuri
bho - Bhojpuri
bi - Bislama
bjn - Banjar
bm - Bambara
bn - Bangla
bo - Tibetan
bpy - Bishnupriya
bqi - Bakhtiari
br - Breton
brh - Brahui
bs - Bosnian
btm - Batak Mandailing
bto - Iriga Bicolano
bug - Buginese
bxr - Russia Buriat
ca - Catalan
cbk-zam - Chavacano
cdo - Min Dong Chinese
ce - Chechen
ceb - Cebuano
ch - Chamorro
cho - Choctaw
chr - Cherokee
chy - Cheyenne
ckb - Central Kurdish
co - Corsican
cps - Capiznon
cr - Cree
crh - Crimean Turkish
crh-cyrl - Crimean Tatar (Cyrillic script)
crh-latn - Crimean Tatar (Latin script)
cs - Czech
csb - Kashubian
cu - Church Slavic
cv - Chuvash
cy - Welsh
da - Danish
de - German
de-at - Austrian German
de-ch - Swiss High German
de-formal - German (formal address)
din - Dinka
diq - Zazaki
dsb - Lower Sorbian
dtp - Central Dusun
dty - Doteli
dv - Divehi
dz - Dzongkha
ee - Ewe
egl - Emilian
el - Greek
eml - Emiliano-Romagnolo
en - English
en-ca - Canadian English
en-gb - British English
eo - Esperanto
es - Spanish
es-419 - Latin American Spanish
es-formal - español (formal)
et - Estonian
eu - Basque
ext - Extremaduran
fa - Persian
ff - Fulah
fi - Finnish
fit - Tornedalen Finnish
fj - Fijian
fo - Faroese
fr - French
frc - Cajun French
frp - Arpitan
frr - Northern Frisian
fur - Friulian
fy - Western Frisian
ga - Irish
gag - Gagauz
gan - Gan Chinese
gan-hans - Gan (Simplified)
gan-hant - Gan (Traditional)
gcr - Guianan Creole
gd - Scottish Gaelic
gl - Galician
glk - Gilaki
gn - Guarani
gom - Goan Konkani
gom-deva - Goan Konkani (Devanagari script)
gom-latn - Goan Konkani (Latin script)
gor - Gorontalo
got - Gothic
grc - Ancient Greek
gsw - Swiss German
gu - Gujarati
gv - Manx
ha - Hausa
hak - Hakka Chinese
haw - Hawaiian
he - Hebrew
hi - Hindi
hif - Fiji Hindi
hif-latn - Fiji Hindi (Latin script)
hil - Hiligaynon
ho - Hiri Motu
hr - Croatian
hrx - Hunsrik
hsb - Upper Sorbian
ht - Haitian Creole
hu - Hungarian
hu-formal - magyar (formal)
hy - Armenian
hyw - Western Armenian
hz - Herero
ia - Interlingua
id - Indonesian
ie - Interlingue
ig - Igbo
ii - Sichuan Yi
ik - Inupiaq
ike-cans - Eastern Canadian (Aboriginal syllabics)
ike-latn - Eastern Canadian (Latin script)
ilo - Iloko
inh - Ingush
io - Ido
is - Icelandic
it - Italian
iu - Inuktitut
ja - Japanese
jam - Jamaican Creole English
jbo - Lojban
jut - Jutish
jv - Javanese
ka - Georgian
kaa - Kara-Kalpak
kab - Kabyle
kbd - Kabardian
kbd-cyrl - Kabardian (Cyrillic script)
kbp - Kabiye
kg - Kongo
khw - Khowar
ki - Kikuyu
kiu - Kirmanjki
kj - Kuanyama
kjp - Eastern Pwo
kk - Kazakh
kk-arab - Kazakh (Arabic script)
kk-cn - Kazakh (China)
kk-cyrl - Kazakh (Cyrillic script)
kk-kz - Kazakh (Kazakhstan)
kk-latn - Kazakh (Latin script)
kk-tr - Kazakh (Turkey)
kl - Kalaallisut
km - Khmer
kn - Kannada
ko - Korean
ko-kp - Korean (North Korea)
koi - Komi-Permyak
kr - Kanuri
krc - Karachay-Balkar
kri - Krio
krj - Kinaray-a
krl - Karelian
ks - Kashmiri
ks-arab - Kashmiri (Arabic script)
ks-deva - Kashmiri (Devanagari script)
ksh - Colognian
ku - Kurdish
ku-arab - Kurdish (Arabic script)
ku-latn - Kurdish (Latin script)
kum - Kumyk
kv - Komi
kw - Cornish
ky - Kyrgyz
la - Latin
lad - Ladino
lb - Luxembourgish
lbe - Lak
lez - Lezghian
lfn - Lingua Franca Nova
lg - Ganda
li - Limburgish
lij - Ligurian
liv - Livonian
lki - Laki
lmo - Lombard
ln - Lingala
lo - Lao
loz - Lozi
lrc - Northern Luri
lt - Lithuanian
ltg - Latgalian
lus - Mizo
luz - Southern Luri
lv - Latvian
lzh - Literary Chinese
lzz - Laz
mai - Maithili
map-bms - Basa Banyumasan
mdf - Moksha
mg - Malagasy
mh - Marshallese
mhr - Eastern Mari
mi - Maori
min - Minangkabau
mk - Macedonian
ml - Malayalam
mn - Mongolian
mni - Manipuri
mnw - Mon
mo - Moldovan
mr - Marathi
mrj - Western Mari
ms - Malay
mt - Maltese
mus - Muscogee
mwl - Mirandese
my - Burmese
myv - Erzya
mzn - Mazanderani
na - Nauru
nah - Nāhuatl
nan - Min Nan Chinese
nap - Neapolitan
nb - Norwegian Bokmål
nds - Low German
nds-nl - Low Saxon
ne - Nepali
new - Newari
ng - Ndonga
niu - Niuean
nl - Dutch
nl-informal - Nederlands (informeel)
nn - Norwegian Nynorsk
no - Norwegian
nov - Novial
nqo - N’Ko
nrm - Norman
nso - Northern Sotho
nv - Navajo
ny - Nyanja
nys - Nyungar
oc - Occitan
olo - Livvi-Karelian
om - Oromo
or - Odia
os - Ossetic
pa - Punjabi
pag - Pangasinan
pam - Pampanga
pap - Papiamento
pcd - Picard
pdc - Pennsylvania German
pdt - Plautdietsch
pfl - Palatine German
pi - Pali
pih - Norfuk / Pitkern
pl - Polish
pms - Piedmontese
pnb - Western Punjabi
pnt - Pontic
prg - Prussian
ps - Pashto
pt - Portuguese
pt-br - Brazilian Portuguese
qqq - Message documentation
qu - Quechua
qug - Chimborazo Highland Quichua
rgn - Romagnol
rif - Riffian
rm - Romansh
rmy - Vlax Romani
rn - Rundi
ro - Romanian
roa-tara - Tarantino
ru - Russian
rue - Rusyn
rup - Aromanian
ruq - Megleno-Romanian
ruq-cyrl - Megleno-Romanian (Cyrillic script)
ruq-latn - Megleno-Romanian (Latin script)
rw - Kinyarwanda
sa - Sanskrit
sah - Sakha
sat - Santali
sc - Sardinian
scn - Sicilian
sco - Scots
sd - Sindhi
sdc - Sassarese Sardinian
sdh - Southern Kurdish
se - Northern Sami
sei - Seri
ses - Koyraboro Senni
sg - Sango
sgs - Samogitian
sh - Serbo-Croatian
shi - Tachelhit
shi-latn - Tachelhit (Latin script)
shi-tfng - Tachelhit (Tifinagh script)
shn - Shan
shy-latn - Shawiya (Latin script)
si - Sinhala
simple - Simple English
sk - Slovak
skr - Saraiki
skr-arab - Saraiki (Arabic script)
sl - Slovenian
sli - Lower Silesian
sm - Samoan
sma - Southern Sami
sn - Shona
so - Somali
sq - Albanian
sr - Serbian
sr-ec - Serbian (Cyrillic script)
sr-el - Serbian (Latin script)
srn - Sranan Tongo
ss - Swati
st - Southern Sotho
stq - Saterland Frisian
sty - cебертатар
su - Sundanese
sv - Swedish
sw - Swahili
szl - Silesian
ta - Tamil
tay - Tayal
tcy - Tulu
te - Telugu
tet - Tetum
tg - Tajik
tg-cyrl - Tajik (Cyrillic script)
tg-latn - Tajik (Latin script)
th - Thai
ti - Tigrinya
tk - Turkmen
tl - Tagalog
tly - Talysh
tn - Tswana
to - Tongan
tpi - Tok Pisin
tr - Turkish
tru - Turoyo
ts - Tsonga
tt - Tatar
tt-cyrl - Tatar (Cyrillic script)
tt-latn - Tatar (Latin script)
tum - Tumbuka
tw - Twi
ty - Tahitian
tyv - Tuvinian
tzm - Central Atlas Tamazight
udm - Udmurt
ug - Uyghur
ug-arab - Uyghur (Arabic script)
ug-latn - Uyghur (Latin script)
uk - Ukrainian
ur - Urdu
uz - Uzbek
uz-cyrl - Uzbek (Cyrillic script)
uz-latn - Uzbek (Latin script)
ve - Venda
vec - Venetian
vep - Veps
vi - Vietnamese
vls - West Flemish
vmf - Main-Franconian
vo - Volapük
vot - Votic
vro - Võro
wa - Walloon
war - Waray
wo - Wolof
wuu - Wu Chinese
xal - Kalmyk
xh - Xhosa
xmf - Mingrelian
xsy - Saisiyat
yi - Yiddish
yo - Yoruba
yue - Cantonese
za - Zhuang
zea - Zeelandic
zgh - Standard Moroccan Tamazight
zh - Chinese
zh-cn - Chinese (China)
zh-hans - Simplified Chinese
zh-hant - Traditional Chinese
zh-hk - Chinese (Hong Kong)
zh-mo - Chinese (Macau)
zh-my - Chinese (Malaysia)
zh-sg - Chinese (Singapore)
zh-tw - Chinese (Taiwan)
zu - Zulu
Format
Export for off-line translation
Export in native format
Fetch
[[Category:Inverter]] <languages /> [[File:Standalone-inverter201108.png|thumb|right|A standard off-grid system with an inverter. An inverter is connected directly to the enegy storage system through an [[Special:MyLanguage/Overcurrent protection|overcurrent protection device.]]]] [[Special:MyLanguage/Solar PV module|PV modules]] and [[Special:MyLanguage/Energy storage|energy storage systems]] function with direct current (DC), yet due to the [[Special:MyLanguage/Electricity and energy|advantages of alternating current (AC)]] the majority of the appliances produced in the world are built to function with an AC input source. This means that it is common to incorporate an inverter, which can convert from DC to AC, into any any system that is intended to function with more than just basic loads like lighting, cell phones and radios. There term inverter covers many different products with different functionality and cost, thus it is important to understand the different factors that go into choosing an inverter to determine the right one a specific application. Inverters are typically the most electronically complex component of an off-grid PV system, which means that they are likely failure point and that investing in a quality inverter is a good decision. If the inverter in a system that is built around AC fails, then the system will stop functioning completely. For this reason, many system designers of small off-grid systems choose to incorporate DC lighting or a DC-based refrigerator into a system to offer the a more robust system that will continue to provide these basic functions even in the event of an inverter failure. The inverter for an off-grid system must will be sized and selected based upon the [[Special:MyLanguage/Load evaluation|load evaluation]] for a particular site - see [[Special:MyLanguage/Inverter sizing and selection|Inverter sizing and selection]] for more information. ==Inverter/charger== [[File:Standalone-inverterchargerunlabeled201108.png|thumb|A PV system with an inverter/charger and generator.]] Many larger off-grid inverters - called inverter/chargers - are able to accept AC input from a generator and convert it to DC to be able to charge the battery bank if weather conditions are poor. This can be a wise investment for larger systems as the size of the [[Special:MyLanguage/PV module|PV source]] and [[Special:MyLanguage/Energy storage|energy storage system]] do not need to be as large to be able to meet demand during infrequent periods of bad weather. Additionally, an inverter can play an important role as a system with a bypass switch will permit the generator to directly power AC loads if the PV system is not functioning properly or needs to be disconnected for maintenance. An inverter/charger will have to be chosen in accordance with the size/type of generator that will be used. ==Watt/VA output== All inverters are rated based upon the amount of power that they can continuously supply in watts or volt-amperes. In addition to this continuous rating an inverter will be able to supply higher amounts of power for brief periods of time in order to supply loads that require momentary surges of more current when starting. These additional ratings may come in 30 minute, 5 minute, 1 minute, 30 second, 10 second or 1 second ratings. All loads and their energy requirements will need to be evaluated to select the appropriate inverter - see [[Special:MyLanguage/Inverter sizing and selection|inverter sizing and selection]] for more information. ==DC input voltage== Inverters are typically available with DC input voltages of 12 V, 24 V, or 48 V. Inverters with a smaller power rating will typically be available in 12/24 V configurations and larger inverters will be available in 24/48 V configurations. ==AC output voltage== Inverters are manufactured for use in specific geographic markets given the voltage of the local grid, but is necessary to confirm that the specifications of the inverter - especially if importing the product - conform to the local voltage. Common output voltages for off-grid inverters are 120 V, 220 V, 240 V. Visit [[Special:MyLanguage/Voltage and frequency by country|Voltage and frequency by country]] for more information. ==Frequency== The frequency of the grid varies globally between 50 Hz-60 Hz. An off-grid inverter that matches the local grid specifications should be chosen. Visit [[Special:MyLanguage/Voltage and frequency by country|Voltage and frequency by country]] for more information. ==Waveforms== [[File:Inverterwaveforms.png|thumb|right|'''A comparison of the different inverter output wave forms:''' ''(1)'' Pure sine wave ''(2)'' Modified sine wave ''(3)'' Square wave]] The most important characteristic of an inverter - that helps to define its functionality and quality - is the ''waveform'' of its alternating current output. The AC that the grid supplies comes in a pure sine wave, which is what all AC appliances are designed to use as their input. A smooth variation between directions of current flow that is operating is necessary for the proper functioning of various complex appliances, but for other simpler appliances it doesn't matter. The three types of output wave forms that are available in the market are the following: *'''Pure sine wave (PSW):''' An inverter that outputs AC in a sine wave that is indistinguishable from that supplied by the electricity grid. The creation of a pure sine wave requires a more complex inverter design that costs more, but the additional cost of a pure sine wave inverter often bring additional efficiency and quality. If the budget allows it, it is recommended that any system that relies on AC continuously to supply loads incorporate a PSW inverter. *'''Modified sine wave (MSW):''' An inverter that outputs AC in a waveform that is rougher than a pure sine wave, but that is indistinguishable for most appliances. MSW are a more economical option for PV systems that require AC, but that are not going to supply large or complex loads like motors, laser printers, battery chargers, washing machines, high-end music equipment - as it can cause them to work improperly or damage them. Motors will consume roughly 25% more energy with a MSW inverter compared to a PSW inverter and the life of the motor will be shortened as that extra energy will be converted into heat. If a system doesn't rely on AC continuously or doesn't power any large or complex loads then a MSW inverter can be a good option. *'''Square wave:''' The simplest and cheapest type of inverter. Current direction switches very rapidly and can damage certain appliances. Will work fine with simple loads like cell phones and lighting, but not recommended for use in a PV system. Frequently poorly designed and manufactured. A modified sine wave or pure sine wave inverter will not cost very much more. ==Idle consumption== An inverter requires energy even if it is not currently supplying loads. Larger off-grid inverters may require more than 30W when not supplying loads, smaller inverters tend to require around 4-8 W. Some inverters will include a low consumption standby mode to reduce idle consumption, but standby modes often do not function well with small off-grid systems as the inverter only activates when a load of a sufficient size is connected to the system. A cell phone charger or radio will often not wake the inverter from standby mode. Inverter idle consumption can greatly affect the design of smaller PV systems as a constantly operating inverter may be the most energy intensive load that the system supplies. It is common practice with smaller systems that use DC for lighting and cell phone charging to incorporate an inverter that is only used as needed to reduce the size of the PV source. {| class="wikitable" border=1 style="width: 60%;" ! style="width: 30%"|Daily idle consumption ! style="text-align:left;"| = idle watts × hours of operation per day |} '''Example 1:''' A small off-grid PV system incorporates an 800W inverter that consumes 7W of power as it sits idle. How much energy will it consume if left on continuously? :Daily idle consumption = 7 W × 24 hr :Daily idle consumption = 168 W This is more energy than two efficient 3W LED lightbulbs - a common size in off-grid applications - would consume if left on continuously. ==Efficiency== Inverters vary in terms of how efficiently the transform DC into AC. Many inverter manufacturers offer a maximum or peak efficiency number for their products, but this number is not likely to be achieved in practice. Inverters will only achieve these efficiency numbers when under a sufficient load, but the number drops rapidly with less loading. An off-grid inverter in practice will have an efficiency of 85-90%. The efficiency of an inverter can have a significant impact on system design and performance. {| class="wikitable" border=1 style="width: 60%;" ! style="width: 30%"|Total energy demand ! style="text-align:left;"| = energy demand of loads ÷ inverter efficiency |} '''Example 1:''' Two inverters are being considered for an off-grid PV system. Both inverters have an 800W power rating, but one is 90% efficient and the other is 85% efficient. It is anticipated that the inverter will have to supply 2400Wh of energy each day. How much extra energy will each inverter require to meet this demand? :Total energy demand inverter 1 = 2400 Wh ÷ .85 = 2824 Wh :Total energy demand inverter 2 = 2400 Wh ÷ .90 = 2667 Wh The less efficient inverter will require 157 Wh more of energy each day to supply the loads. This could mean that the PV source needs to be larger. ==Additional inverter features== There are many other additional features that inverters offer that may be of value on a specific project. ===User interface=== A user interface can convey vital information about the loads and the state of the inverter, which users can revise regularly in order to be able to adjust their usage properly and protect the energy storage system. Additionally, a user interface should be assessed for how much programming it allows the user to perform and if it allows the revision of historical system data. ===Programmability=== The larger the power rating of an off-grid inverter, typically the more user programming is permitted to enable customization according to the end user needs. There are basic functions, like the parameter for the [[Special:MyLanguage/Low voltage disconnect|low voltage disconnect]], and other more complicated functions related to its output, standby modes to save on idle consumption, and generator management. See [[Special:MyLanguage/Inverter programming|inverter programming]] for more information. ===Data logging and monitoring=== A data logging/monitoring system can enable an inverter to share or record data about the performance of the system. The level of detail and amount of time for which an inverter can store data varies. Information about maximum power, usage and system voltage can be very useful in assessing how the system is performing, if the user is treating the system properly and resolving any technical issues that may arise. Some systems may also offer the capability of remote monitoring through cell phone signals or the internet, which can be very useful for remote systems if possible. == Projected life == There is no specific projected life for an inverter as it varies significantly based upon its quality and how it is used. A low-quality inverter may only last for six months of heavy use before failing, whereas a high-quality inverter that is used lightly could last decades. With inverters you generally get what you pay for - a cheap inverter can end up being expensive in the long run. == Maintenance == The user manual for an inverter should always be consulted, but most inverters do not require much maintenance if they are used under proper conditions. They should be kept free of dust, insects, and water. Connections should be periodically revised - at least once a year - to make sure that they are still tightened properly and not creating unnecessary resistance. == Recyclability == Inverters contain a variety of different materials and chemicals that can be hazardous if not disposed of properly. They should be treated as electronic waste. Contacting the manufacturer is recommended. == Notes/references==
Navigation menu
Personal tools
English
Create account
Log in
Namespaces
Special page
Variants
Views
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
Special pages
Printable version