Export translations
Jump to navigation
Jump to search
Settings
Group
About OSSP
Basic stand-alone PV system components
Battery wiring
Busbar
Charge controller
Charge controller programming
Combiner box
Commissioning
Conductor size
Conductor types
Conduit
Continuous duty safety parameter
DC system voltage
DC-DC converter
Design parameter overview
Design process overview
DIN rail
Disconnect
Distribution panel
Duty cycle
Electrical codes
Electrical safety
Electricity and energy
Electricity types
Energy efficient loads
Energy storage
Energy storage sizing and selection
Equipment certification
Equipment clearances and safe working space
Ground fault protection device
Grounding system
Insolation
Installing module connectors
Insulation color
Inverter
Inverter programming
Irradiance safety parameter
Junction box
Labeling
Lead acid battery
Lighting
Lithium-ion battery
Load and solar resource comparison
Load evaluation
Low voltage disconnect
Low voltage disconnect parameter
Main Page
Module connectors
Mounting system types
Multimeters
OSSP stand-alone system design tool
Outlet
Overcurrent protection device
Peru
Physical evaluation
Power factor
Power flow between components
Principles of installation
PV module
PV source and charge controller sizing and selection overview
PV system types
Residual current device
Resources
Series and parallel connections
Shading
Shunt
Simplified energy storage sizing and selection
Simplified load evaluation
Simplified minimum PV source size
Simplified MPPT charge controller sizing and selection
Simplified physical evaluation
Simplified PWM charge controller sizing and selection
Simplified weather and solar resource evaluation
Site evaluation process overview
Stand-alone system configurations
Surge loads
Switch
Tilt and azimuth
Training providers
Troubleshooting
Twist-on wire connector
United States
Voltage and frequency by country
Voltage drop
Weather and solar resource evaluation
Weather rating
What is an off-grid PV system?
Wire terminal
Wiring basic load circuits
Wiring practices
Language
aa - Afar
ab - Abkhazian
abs - Ambonese Malay
ace - Achinese
ady - Adyghe
ady-cyrl - Adyghe (Cyrillic script)
aeb - Tunisian Arabic
aeb-arab - Tunisian Arabic (Arabic script)
aeb-latn - Tunisian Arabic (Latin script)
af - Afrikaans
ak - Akan
aln - Gheg Albanian
am - Amharic
an - Aragonese
ang - Old English
anp - Angika
ar - Arabic
arc - Aramaic
arn - Mapuche
arq - Algerian Arabic
ary - Moroccan Arabic
arz - Egyptian Arabic
as - Assamese
ase - American Sign Language
ast - Asturian
atj - Atikamekw
av - Avaric
avk - Kotava
awa - Awadhi
ay - Aymara
az - Azerbaijani
azb - South Azerbaijani
ba - Bashkir
ban - Balinese
bar - Bavarian
bbc - Batak Toba
bbc-latn - Batak Toba (Latin script)
bcc - Southern Balochi
bcl - Central Bikol
be - Belarusian
be-tarask - Belarusian (Taraškievica orthography)
bg - Bulgarian
bgn - Western Balochi
bh - Bhojpuri
bho - Bhojpuri
bi - Bislama
bjn - Banjar
bm - Bambara
bn - Bangla
bo - Tibetan
bpy - Bishnupriya
bqi - Bakhtiari
br - Breton
brh - Brahui
bs - Bosnian
btm - Batak Mandailing
bto - Iriga Bicolano
bug - Buginese
bxr - Russia Buriat
ca - Catalan
cbk-zam - Chavacano
cdo - Min Dong Chinese
ce - Chechen
ceb - Cebuano
ch - Chamorro
cho - Choctaw
chr - Cherokee
chy - Cheyenne
ckb - Central Kurdish
co - Corsican
cps - Capiznon
cr - Cree
crh - Crimean Turkish
crh-cyrl - Crimean Tatar (Cyrillic script)
crh-latn - Crimean Tatar (Latin script)
cs - Czech
csb - Kashubian
cu - Church Slavic
cv - Chuvash
cy - Welsh
da - Danish
de - German
de-at - Austrian German
de-ch - Swiss High German
de-formal - German (formal address)
din - Dinka
diq - Zazaki
dsb - Lower Sorbian
dtp - Central Dusun
dty - Doteli
dv - Divehi
dz - Dzongkha
ee - Ewe
egl - Emilian
el - Greek
eml - Emiliano-Romagnolo
en - English
en-ca - Canadian English
en-gb - British English
eo - Esperanto
es - Spanish
es-419 - Latin American Spanish
es-formal - español (formal)
et - Estonian
eu - Basque
ext - Extremaduran
fa - Persian
ff - Fulah
fi - Finnish
fit - Tornedalen Finnish
fj - Fijian
fo - Faroese
fr - French
frc - Cajun French
frp - Arpitan
frr - Northern Frisian
fur - Friulian
fy - Western Frisian
ga - Irish
gag - Gagauz
gan - Gan Chinese
gan-hans - Gan (Simplified)
gan-hant - Gan (Traditional)
gcr - Guianan Creole
gd - Scottish Gaelic
gl - Galician
glk - Gilaki
gn - Guarani
gom - Goan Konkani
gom-deva - Goan Konkani (Devanagari script)
gom-latn - Goan Konkani (Latin script)
gor - Gorontalo
got - Gothic
grc - Ancient Greek
gsw - Swiss German
gu - Gujarati
gv - Manx
ha - Hausa
hak - Hakka Chinese
haw - Hawaiian
he - Hebrew
hi - Hindi
hif - Fiji Hindi
hif-latn - Fiji Hindi (Latin script)
hil - Hiligaynon
ho - Hiri Motu
hr - Croatian
hrx - Hunsrik
hsb - Upper Sorbian
ht - Haitian Creole
hu - Hungarian
hu-formal - magyar (formal)
hy - Armenian
hyw - Western Armenian
hz - Herero
ia - Interlingua
id - Indonesian
ie - Interlingue
ig - Igbo
ii - Sichuan Yi
ik - Inupiaq
ike-cans - Eastern Canadian (Aboriginal syllabics)
ike-latn - Eastern Canadian (Latin script)
ilo - Iloko
inh - Ingush
io - Ido
is - Icelandic
it - Italian
iu - Inuktitut
ja - Japanese
jam - Jamaican Creole English
jbo - Lojban
jut - Jutish
jv - Javanese
ka - Georgian
kaa - Kara-Kalpak
kab - Kabyle
kbd - Kabardian
kbd-cyrl - Kabardian (Cyrillic script)
kbp - Kabiye
kg - Kongo
khw - Khowar
ki - Kikuyu
kiu - Kirmanjki
kj - Kuanyama
kjp - Eastern Pwo
kk - Kazakh
kk-arab - Kazakh (Arabic script)
kk-cn - Kazakh (China)
kk-cyrl - Kazakh (Cyrillic script)
kk-kz - Kazakh (Kazakhstan)
kk-latn - Kazakh (Latin script)
kk-tr - Kazakh (Turkey)
kl - Kalaallisut
km - Khmer
kn - Kannada
ko - Korean
ko-kp - Korean (North Korea)
koi - Komi-Permyak
kr - Kanuri
krc - Karachay-Balkar
kri - Krio
krj - Kinaray-a
krl - Karelian
ks - Kashmiri
ks-arab - Kashmiri (Arabic script)
ks-deva - Kashmiri (Devanagari script)
ksh - Colognian
ku - Kurdish
ku-arab - Kurdish (Arabic script)
ku-latn - Kurdish (Latin script)
kum - Kumyk
kv - Komi
kw - Cornish
ky - Kyrgyz
la - Latin
lad - Ladino
lb - Luxembourgish
lbe - Lak
lez - Lezghian
lfn - Lingua Franca Nova
lg - Ganda
li - Limburgish
lij - Ligurian
liv - Livonian
lki - Laki
lmo - Lombard
ln - Lingala
lo - Lao
loz - Lozi
lrc - Northern Luri
lt - Lithuanian
ltg - Latgalian
lus - Mizo
luz - Southern Luri
lv - Latvian
lzh - Literary Chinese
lzz - Laz
mai - Maithili
map-bms - Basa Banyumasan
mdf - Moksha
mg - Malagasy
mh - Marshallese
mhr - Eastern Mari
mi - Maori
min - Minangkabau
mk - Macedonian
ml - Malayalam
mn - Mongolian
mni - Manipuri
mnw - Mon
mo - Moldovan
mr - Marathi
mrj - Western Mari
ms - Malay
mt - Maltese
mus - Muscogee
mwl - Mirandese
my - Burmese
myv - Erzya
mzn - Mazanderani
na - Nauru
nah - Nāhuatl
nan - Min Nan Chinese
nap - Neapolitan
nb - Norwegian Bokmål
nds - Low German
nds-nl - Low Saxon
ne - Nepali
new - Newari
ng - Ndonga
niu - Niuean
nl - Dutch
nl-informal - Nederlands (informeel)
nn - Norwegian Nynorsk
no - Norwegian
nov - Novial
nqo - N’Ko
nrm - Norman
nso - Northern Sotho
nv - Navajo
ny - Nyanja
nys - Nyungar
oc - Occitan
olo - Livvi-Karelian
om - Oromo
or - Odia
os - Ossetic
pa - Punjabi
pag - Pangasinan
pam - Pampanga
pap - Papiamento
pcd - Picard
pdc - Pennsylvania German
pdt - Plautdietsch
pfl - Palatine German
pi - Pali
pih - Norfuk / Pitkern
pl - Polish
pms - Piedmontese
pnb - Western Punjabi
pnt - Pontic
prg - Prussian
ps - Pashto
pt - Portuguese
pt-br - Brazilian Portuguese
qqq - Message documentation
qu - Quechua
qug - Chimborazo Highland Quichua
rgn - Romagnol
rif - Riffian
rm - Romansh
rmy - Vlax Romani
rn - Rundi
ro - Romanian
roa-tara - Tarantino
ru - Russian
rue - Rusyn
rup - Aromanian
ruq - Megleno-Romanian
ruq-cyrl - Megleno-Romanian (Cyrillic script)
ruq-latn - Megleno-Romanian (Latin script)
rw - Kinyarwanda
sa - Sanskrit
sah - Sakha
sat - Santali
sc - Sardinian
scn - Sicilian
sco - Scots
sd - Sindhi
sdc - Sassarese Sardinian
sdh - Southern Kurdish
se - Northern Sami
sei - Seri
ses - Koyraboro Senni
sg - Sango
sgs - Samogitian
sh - Serbo-Croatian
shi - Tachelhit
shi-latn - Tachelhit (Latin script)
shi-tfng - Tachelhit (Tifinagh script)
shn - Shan
shy-latn - Shawiya (Latin script)
si - Sinhala
simple - Simple English
sk - Slovak
skr - Saraiki
skr-arab - Saraiki (Arabic script)
sl - Slovenian
sli - Lower Silesian
sm - Samoan
sma - Southern Sami
sn - Shona
so - Somali
sq - Albanian
sr - Serbian
sr-ec - Serbian (Cyrillic script)
sr-el - Serbian (Latin script)
srn - Sranan Tongo
ss - Swati
st - Southern Sotho
stq - Saterland Frisian
sty - cебертатар
su - Sundanese
sv - Swedish
sw - Swahili
szl - Silesian
ta - Tamil
tay - Tayal
tcy - Tulu
te - Telugu
tet - Tetum
tg - Tajik
tg-cyrl - Tajik (Cyrillic script)
tg-latn - Tajik (Latin script)
th - Thai
ti - Tigrinya
tk - Turkmen
tl - Tagalog
tly - Talysh
tn - Tswana
to - Tongan
tpi - Tok Pisin
tr - Turkish
tru - Turoyo
ts - Tsonga
tt - Tatar
tt-cyrl - Tatar (Cyrillic script)
tt-latn - Tatar (Latin script)
tum - Tumbuka
tw - Twi
ty - Tahitian
tyv - Tuvinian
tzm - Central Atlas Tamazight
udm - Udmurt
ug - Uyghur
ug-arab - Uyghur (Arabic script)
ug-latn - Uyghur (Latin script)
uk - Ukrainian
ur - Urdu
uz - Uzbek
uz-cyrl - Uzbek (Cyrillic script)
uz-latn - Uzbek (Latin script)
ve - Venda
vec - Venetian
vep - Veps
vi - Vietnamese
vls - West Flemish
vmf - Main-Franconian
vo - Volapük
vot - Votic
vro - Võro
wa - Walloon
war - Waray
wo - Wolof
wuu - Wu Chinese
xal - Kalmyk
xh - Xhosa
xmf - Mingrelian
xsy - Saisiyat
yi - Yiddish
yo - Yoruba
yue - Cantonese
za - Zhuang
zea - Zeelandic
zgh - Standard Moroccan Tamazight
zh - Chinese
zh-cn - Chinese (China)
zh-hans - Simplified Chinese
zh-hant - Traditional Chinese
zh-hk - Chinese (Hong Kong)
zh-mo - Chinese (Macau)
zh-my - Chinese (Malaysia)
zh-sg - Chinese (Singapore)
zh-tw - Chinese (Taiwan)
zu - Zulu
Format
Export for off-line translation
Export in native format
Fetch
{{DISPLAYTITLE:Electricity and energy}}[[Category:Basic concepts]] <languages /> Electricity seems to be everwhere: flowing in our bodies to power our hearts, lightning is constantly striking the earth at roughly 100 strikes per second<ref name="lightning"> NOAA Lightning Flash Rate. https://sos.noaa.gov/datasets/lightning-flash-rate/</ref>, and nearly all of the factories and offices in the world use it. But it only seems to be everwhere as there continue to be nearly a billion people without access to electricity globally, primarily rural villages. The primary issue has always been that electricity was always produced in a few select locations and then distributed out from there in a system called the electrical grid to homes and businesses, which can be very expensive to expand. Despite not even reaching everyone on the planet, the electrical grid causes significant environmental damage that affect everyone. PV systems can be used to solve both of these issue: a lack of access in many parts of the world and the pollution that is created by non-renewable forms of energy like coal. [[Special:MyLanguage/PV system types|Grid-tied PV systems]] can be used to help reduce the environmental impacts of electricity use and [[Special:MyLanguage/PV system types|stand-alone PV systems]] can help provide energy to areas where the grid doesn’t reach as they are able to produce, store and provide energy in the form of electricity even in the most remote locations. [[File:Grid.png|frame|center|''Right -'' Most power grids rely on centralized forms of generation (coal, natural gas, nuclear, large scale hydro to produce electricity that is distributed to homes through the transmission and distribution lines.<br />''Left -'' Off-grid PV systems are independent of this system.]] A PV system needs to be designed to match the characteristics of the electrical system in an area and the energy needs of the end-user. Not just designers and installers of off-grid systems need to understand electricity and energy thoroughly, but also users to make sure that they do not damage their system by using it beyond its capabilities. The main concepts that are necessary to understand are: *Current *Voltage *Resistance These are the building blocks of even the most complex electrical systems. ==What is electricity?== [[File:Electronswire.png|thumb|right|A cross-section of a copper wire with its atoms enlarged. The electrons are flowing from atom to atom on their way from areas of high concentration to areas of low concentration.]] Electricity is a force created from the basic building block of all matter - atoms. All atoms are composed of three core components - neutrons (no charge), protons (positive charge) and electrons (negative charge). Out of these three, the only one that is able to freely move from atom to atom is the negatively charged electron. Electrons can build up in higher concentrations in some locations and create a negative charge. Or there can be a lack of electrons, which create a positive charge. Electrons desire to flow from areas of high electron concentration to areas of low electron concentration. Not all atoms or materials have free electrons that can move around easily such as wood, plastic or rock. We call these ''insulators''. Metals and copper are good ''conductors'' as they have abundant free electrons. The small static electric shocks that we receive from our cloths are the result of a difference in electrons from your body to that item - this difference is ''voltage''. As the electrons pass from your body to that item of clothing a ''current'' is created. ==Circuits== Static electricity and lightning are not useful to humanity as they are not in controlled systems. Electricity needs to be contained within an electrical system comprised of circuits for it to be used properly and safely. A basic electrical circuit is a closed loop built out of the following: 1. An energy source that has or can create an imbalance of electrons between to two points, which is voltage. 2. Conductive material, like wires, that allows electrons to flow from areas of high concentration to areas of low concentration. This flow is current. 3. A load or some means of constraining electron flow. Without a load or some kind of way of restraining electron flow, the electron difference created by the energy source will quickly reach zero. Circuits can be in various states: *'''Closed:''' Connected, on, functioning. A properly connected circuit with a load which has current flowing. *'''Open:''' Disconnected, off, disabled. A circuit that is not connected or switched off which has no current flowing. *'''Short:''' Fault, improper low resistance connection. A circuit that has been improperly built without sufficient resistance - like a load - to constrain the flow of current. A circuit in a short circuit state will allow as much current to flow as possible until the power source is exhausted. If a load is connected in parallel with a short-circuit, like in the diagram, the load may stop functioning due to insufficient voltage/current. <gallery widths=250px> Closedcircuit.png|'''Closed circuit:'''<br />An operational circuit. Electrons are flowing and the light bulb is lit up. Opencircuit.png|'''Open circuit:'''<br />A circuit that is disconnected - possibly due to a switch - with no electrons flowing. Shortcircuit.png|'''Short circuit:'''<br />An improperly functioning circuit with a low-resistance path for current to flow. Voltage drops nearly to zero as electrons take the low resistance path. </gallery> ==Characteristics of electricity== Electricity is almost always invisible, but we can use something that acts similarly - water - to make the concept understandable. A circuit with a battery - like in the previous graphic - operates at a certain voltage and current, similarly a basic system used to transport and store water operates with a certain pressure and volume. *The voltage an electrical circuit is similar to the pressure in a water system. *The current an electrical circuit is similar to the flow in a water system. *The wires and load in an electrical circuit create resistance. The pipes and devices that consume water, like a sprinkler, also create friction. ===Voltage=== Voltage is the force that moves electrons in a circuit and is measured in volts (V). It can be thought of as electrical pressure and in a circuit with a battery the voltage is determined by type of battery and the amount of energy stored in the battery. Voltage is similar to the pressure created in the water system. It depends upon the amount of water in the water that it holds. ===Current=== Current is the flow of electrons in a circuit and is measured in amperes or amps (A). Current is similar to the volume of water flowing in the water system. It depends upon the amount of water permitted to flow by the valve and upon the pressure in the system. ===Resistance=== Resistance (R) is a force that resists the flow of current, which is present in all materials and all electrical systems. It is measured in Ohms (Ω). If the wires in an electrical circuit are too small for the amount of current that they need to carry, it will create friction and heat. Voltage is lost as a result. Similarly, the pipes through which the water flows in the water system can create friction if there is too much pressure or volume trying to pass through them. <gallery widths=250px> File:Pressurevoltage.png|'''Voltage:'''<br /> ''Left -'' A full water tank has a lot of pressure.<br />''Right -'' An empty water tank has no pressure. File:Volumecurrent.png|'''Current:'''<br />''Left -'' A valve that is completely open allows a high volume of water to flow.<br />''Right -'' A valve that is nearly shut allows a low volume of water to flow. File:Resistancecomparisons.png|'''Resistance:'''<br />''Left -'' The valve part way open with a small pipe creating friction and reducing volume.<br />''Right -'' The valve part way open with a large pipe allowing the volume to easily pass through. </gallery> ==Power: watts== '''Power (P)''' is a measurement of work done in a unit of time. How much electricity is being consumed, which is power, in an electric circuit depends upon both the voltage and the current of the circuit. In electrical systems power is measured in '''watts (W)''' A watt is a measure of the energy produced or consumed in one second. Power is also commonly expressed in kW (1 kW = 1000 W) and MW (1 MW = 1,000,000 W) in larger systems. Similarly, if water flowing from the water system is used to perform work, like spinning a wheel, the power that is used will depend upon both the volume and the pressure of the water supplied. An inefficient load in an electrical system or water system requires more power to function than an efficient one. <gallery widths=250px> File:Power.png|'''Power:'''<br />''Left -'' Higher pressure and volume has more power and will cause the wheel to spin faster.<br />''Right -'' Low pressure and volume will cause the wheel to spin slowly. File:Efficiency.png|'''Efficiency:'''<br />''Left -'' An inefficient load will consume a lot of power.<br />''Right -'' An efficient load will consume little power. </gallery> The formula for calculating power in an electrical system is: {| class="wikitable" border=1 style="width: 60%;" ! style="width: 30%"|Power (P) ! style="text-align:left;"| = voltage (V) × current (I) |} The same amount of power can be generated with by using varying amounts of voltage and current. For example: *1000 watts = 10 volts × 100 amps *1000 watts = 100 volts × 10 amps [[File:Phonecharger.png|thumb|right|All appliances should have a label with their rated power consumption on them. Often times it is in volts and amps rather than watts. With these two values, you can easily calculate the power (W) for the load. The equation can also be rearranged to solve for missing variables. If you have any two of the three variables (P, V, I), then you can solve for the third. For example: '''Example 1:''' A cell phone is charging. It is connected to a 12V battery and there is 1A of current flowing. How much power is being consumed? :*P = 12 V × .5 A ::W = 6 W '''Example 2:''' A television is using 48 W of power. The battery that it is connected to has a voltage of 12 V. How much current (I) is flowing? :*48 W = 12 V x I ::I = 48 W ÷ 12 V ::I = 4 A '''Example 3:''' A small water pump is being used to fill a tank. It is a 440 W pump and there are 2 A of current flowing. What is the voltage of the system? :*440 W = V × 2 A ::V = 440 W ÷ 2 A ::V = 220 V ==Energy: watt-hours== [[File:Meter.png|thumb|right|200px|A typical electricity meter for a grid connection. Most meters measure energy in kWh. If you are connected to the grid, you will be charged a price per kWh consumed.]] Power is a quick look at how much energy is being consumed or produced. For an electrical system this is an important value, but it is equally important to understand power consumption over time. Energy consumption over time is measured in watt-hours (Wh) or kilo-watt-hours (kWh). A watt-hour is the consumption of 1W of power for 1 hour. The formula for calculating Watt-hours is simple: {| class="wikitable" border=1 style="width: 60%;" ! style="width: 30%"|Watt-hours (Wh) ! style="text-align:left;"| = power (P) × time in hours (t) |} *Time in hours can be a fraction or percentage if necessary. '''Example 1:''' A radio is plugged in and plays music for 3 hours. The radio says on the back that it consumes 7 W of power. :*Wh = 7 W × 3 hours ::Wh = 21 Wh '''Example 2:''' The motor on a fan says that it requires 60 W. The fan is left on during the night for 12 hours. :*Wh = 60 W × 12 hours ::Wh = 720 Wh == Notes == <references/>
Navigation menu
Personal tools
English
Create account
Log in
Namespaces
Special page
Variants
Views
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
Special pages
Printable version