Programación del controlador de carga
thumb|right|Ejemplo de un controlador de carga programable con una pantalla LCD y botones. Los controladores de carga más simples dependen de la configuración de fábrica y no permiten ninguna programación. Un controlador de carga es vital para asegurar la longevidad o ciclos de vida de las baterías, por lo tanto, un controlador de carga que no se puede programar debe seleccionarse cuidadosamente para garantizar que los ajustes de fábrica sean apropiados para el tipo, voltaje y tamaño de almacenamiento de energía que se utilizará con el sistema. Los controladores de carga para todos los sistemas, excepto los más pequeños, ofrecen diversos grados de programación, desde configuraciones básicas (voltaje del sistema, tipo de batería) hasta modificaciones complejas sobre cómo el controlador de carga regula la carga. Para programar correctamente un controlador de carga, es necesario tener a mano los manuales del controlador de carga, el tipo de batería y cualquier sistema de comunicaciones.
Contents
Configuración básica
Los controladores de carga que permiten la programación a menudo vendrán con configuraciones preprogramadas para diferentes tipos de baterías y tensiónes de carga, pero se recomienda que todas las configuraciones sean examinadas y ajustadas a las especificaciones del sistema específico.
- Tensión nominal: La tensión nominal del banco de baterías. Normalmente, 12V, 24V o 48V.
- Tipo de batería: Ajusta los parámetros de carga para el tipo de batería, incluida la corrección de temperatura.
- Capacidad de almacenamiento de energía: La capacidad total de almacenamiento de energía del sistema. Esto estará en amperios-hora (Ah) para baterías de plomo ácido.
- Interruptor de baja tensión: Si el controlador de carga tiene control de iluminación, el controlador de carga a menudo se puede configurar para desconectar automáticamente las cargas de iluminación si la tensión del sistema de almacenamiento de energía alcanza un cierto valor mínimo para protegerlo de descargas profundas que pueden reducir en gran medida los ciclos de vida. Normalmente se establece en alrededor del 20% del estado de carga (SOC). También es posible establecer el valor en el que se permite que la iluminación se vuelva a reconectar para que el sistema de almacenamiento de energía tenga tiempo suficiente para recargarse; se recomienda un valor superior al 20% de SOC.
- Puntos de ajuste de carga: Las tensiones a las que se inician y se detienen las diferentes fases de carga varían según el tipo de batería y el fabricante. Los fabricantes de baterías proporcionarán especificaciones de carga específicas en el manual del producto para carga abundante, absorción, flotación y ecualización. Estos valores a menudo se darán como un rango, se recomienda programar el controlador de carga en el extremo superior del rango para cada uno de estos valores.
Configuración avanzado
Taza de carga máxima
La cantidad máxima de corriente de carga que puede manejar un tipo de batería varía según su tamaño, tipo y fabricante. Las especificaciones para la tasa máxima de carga se pueden encontrar en el manual de la batería y normalmente se dan como un porcentaje de la tasa-C. Baterías inundadas de plomo-ácido (FLA) y baterías de plomo-ácido de celda de gel generalmente tienen una tasa de carga máxima entre el 10% y el 20% de la tasa C/20. [1]. Baterías de plomo-ácido de matriz de fibra de vidrio (AGM) a menudo pueden aceptar corrientes de carga más altas, a veces tan altas como el 35% de su tasa C/20[1].
Es importante que la tasa de carga máxima se establezca teniendo en cuenta todas las cadenas paralelas en el banco de baterías.
- Ejemplo 1: Un sistema de 48 V tiene 2 cadenas de baterías conectadas en paralelo con una capacidad nominal de 205Ah @ C/20. La tasa de carga recomendada para este tipo de batería es el 12% de la tasa C/20. ¿Qué es la tasa de carga máxima para este banco de baterías?
- Tasa de carga máxima = tasa C/20 × cadenas paralelas × porcentaje de tasa máxima C/20 del fabricante
- Tasa de carga máxima = 205Ah × 2 cadenas en paralelo × .12 (12%) = 49.2A
Etapa de carga de absorción cronometrada
La etapa de absorción de un controlador de carga se puede configurar para mantener el banco de baterías a un voltaje constante durante un período de tiempo establecido. Es deseable una etapa de absorción suficientemente larga ya que asegura que la batería reciba una carga completa bajo una corriente sustancial, lo cual es útil para asegurar que el sistema de almacenamiento dura para muchos ciclos. La duración apropiada de una carga de absorción depende del tipo de batería, el tamaño del sistema de almacenamiento y la tasa de carga máxima disponible para el sistema. Un fabricante puede dar una recomendación en el manual para la batería en particular, pero muchas veces es necesario consultar otras fuentes.
Rolls Battery recomienda calcular el tiempo deseado de absorción para baterías de plomo-ácido inundadas (FLA) así:[1][2]
Tiempo de fase de absorción = 0,42 × C ÷ I
- C = 20 horas de capacidad nominal (capacidad total AH del banco de baterías)
- I = Corriente de carga máxima disponible proporcionada por la fuente FV. Este valor se puede calcular para diferentes tipos de controladores de carga en la siguiente manera:
- Controlador de carga tipo PWM corriente de carga máxima disponible = cadenas en paralelo × ISC
- Controlador de carga tipo MPPT corriente de carga máxima disponible = Potencia nominal de la fuente FV ÷ tensión nominal del sistema
- Este número puede estar limitado por la tasa de carga máxima programada para el controlador de carga o por la corriente de salida máxima del controlador de carga, en cuyo caso se debe usar ese valor.
- Ejemplo 1: Un banco de baterías tiene 2 cadenas de 6 baterías cada uno del modelo CS 25P de 6 voltios. Estas baterías son de 853Ah cada una. La fuente FV tiene una corriente de carga máxima disponible que es 10% de C/20 o 170 Ah (2 cadenas en paralelo x 853 Ah × 0,10 (10%) = 170 Ah).
- Tiempo de la etapa de absorción = 0,42 × (853Ah x 2 cadenas en paralelo) ÷ 170Ah
- Tiempo de la fase de absorción = 4,2 horas
Rolls Battery recomienda calcular el tiempo deseado de absorción para baterías de plomo-ácido regulado por válvula (VRLA) así:
Tiempo de la etapa be absorción = 0.38 × C ÷ I
- C = 20 horas de capacidad nominal (capacidad total AH del banco de baterías)
- I = Corriente de carga máxima disponible proporcionada por la fuente FV. Este valor se puede calcular para diferentes tipos de controladores de carga en la siguiente manera:
- Controlador de carga tipo PWM corriente de carga máxima disponible = cadenas en paralelo × ISC
- Controlador de carga tipo MPPT corriente de carga máxima disponible = Potencia nominal de la fuente FV ÷ tensión nominal del sistema
- Este número puede estar limitado por la tasa de carga máxima programada para el controlador de carga o por la corriente de salida máxima del controlador de carga, en cuyo caso se debe usar ese valor.
- Ejemplo 1: Un banco de baterías tiene 2 cadenas de 2 baterías tipo AGM del modelo S6-460 de 6 voltios. Estas baterías son de 460 Ah cada una. La fuente FV tiene una corriente de carga máxima disponible que es del 15% de C/20 o 120 Ah (2 cadenas en paralelo x 460 Ah × 0,13 (13%) = 120 Ah).
- Tiempo de la etapa de absorción = 0.38 × (460Ah x 2 cadenas en paralelo) ÷ 120Ah
- Tiempo de la etapa de absorción = 2,9 horas
Corriente de terminación para la etapa de absorción
La etapa de absorción de un controlador de carga se puede configurar para mantener el sistema de almacenamiento de energía a una tensión constante utilizando la cantidad mínima de corriente necesaria para hacerlo hasta que se alcance una corriente mínima establecida o programada. La corriente mínima apropiada depende del tipo de batería, el tamaño del sistema de almacenamiento de energía y la tasa de carga máxima disponible para el sistema. Un fabricante puede dar una recomendación en el manual para la batería en particular, pero muchas veces es necesario consultar otras fuentes.
Trojan Battery recommends the following approaches for flooded lead acid (FLA) batteries:[3]
Absorption finish current = 1-3% of C/20 rate
- Example 1: A battery bank has 2 strings of 12 Volt SPRE 12 225 model batteries. These batteries are 225Ah each.
- Absorption finish current = .01 × (2 × 225Ah)
- Absorption finish current = 4.5A
Trojan Battery recommends the following approaches for valve regulated lead acid (VRLA) batteries:[3]
Absorption finish current = .5% of C/20 rate
- Example 1: A battery bank has 2 strings of 12 Volt SAGM 12 205 model batteries. These batteries are 205Ah each.
- Absorption finish current = .005 × (2 × 205Ah)
- Absorption finish current = 2.05A
Notes/references
- ↑ 1.0 1.1 1.2 Rolls Battery User Manual https://rollsbattery.com/public/docs/user_manual/Rolls_Battery_Manual.pdf
- ↑ Rolls FLA charging programming https://rollsbattery.com/public/docs/user_manual/Rolls_Battery_Manual.pdf
- ↑ 3.0 3.1 Trojan Battery User Guide https://www.trojanbattery.com/pdf/TrojanBattery_UsersGuide.pdf