Programación del controlador de carga

From Open Source Solar Project
Revision as of 20:14, 7 March 2021 by Alex (talk | contribs) (Created page with "===Taza de carga máxima===")
Jump to navigation Jump to search
Other languages:
English • ‎español

thumb|right|Ejemplo de un controlador de carga programable con una pantalla LCD y botones. Los controladores de carga más simples dependen de la configuración de fábrica y no permiten ninguna programación. Un controlador de carga es vital para asegurar la longevidad o ciclos de vida de las baterías, por lo tanto, un controlador de carga que no se puede programar debe seleccionarse cuidadosamente para garantizar que los ajustes de fábrica sean apropiados para el tipo, voltaje y tamaño de almacenamiento de energía que se utilizará con el sistema. Los controladores de carga para todos los sistemas, excepto los más pequeños, ofrecen diversos grados de programación, desde configuraciones básicas (voltaje del sistema, tipo de batería) hasta modificaciones complejas sobre cómo el controlador de carga regula la carga. Para programar correctamente un controlador de carga, es necesario tener a mano los manuales del controlador de carga, el tipo de batería y cualquier sistema de comunicaciones.

Configuración básica

Los controladores de carga que permiten la programación a menudo vendrán con configuraciones preprogramadas para diferentes tipos de baterías y tensiónes de carga, pero se recomienda que todas las configuraciones sean examinadas y ajustadas a las especificaciones del sistema específico.

  • Tensión nominal: La tensión nominal del banco de baterías. Normalmente, 12V, 24V o 48V.
  • Tipo de batería: Ajusta los parámetros de carga para el tipo de batería, incluida la corrección de temperatura.
  • Capacidad de almacenamiento de energía: La capacidad total de almacenamiento de energía del sistema. Esto estará en amperios-hora (Ah) para baterías de plomo ácido.
  • Interruptor de baja tensión: Si el controlador de carga tiene control de iluminación, el controlador de carga a menudo se puede configurar para desconectar automáticamente las cargas de iluminación si la tensión del sistema de almacenamiento de energía alcanza un cierto valor mínimo para protegerlo de descargas profundas que pueden reducir en gran medida los ciclos de vida. Normalmente se establece en alrededor del 20% del estado de carga (SOC). También es posible establecer el valor en el que se permite que la iluminación se vuelva a reconectar para que el sistema de almacenamiento de energía tenga tiempo suficiente para recargarse; se recomienda un valor superior al 20% de SOC.
  • Puntos de ajuste de carga: Las tensiones a las que se inician y se detienen las diferentes fases de carga varían según el tipo de batería y el fabricante. Los fabricantes de baterías proporcionarán especificaciones de carga específicas en el manual del producto para carga abundante, absorción, flotación y ecualización. Estos valores a menudo se darán como un rango, se recomienda programar el controlador de carga en el extremo superior del rango para cada uno de estos valores.

Configuración avanzado

Taza de carga máxima

The maximum amount of charging current that a type of battery can handle varies based upon its size, type and manufacturer. Specifications for the maximum charge rate can be found in the manual for the battery and will typically be given as a percentage of the C-rate. Flooded lead acid (FLA) batteries and Gel batteries generally have a maximum charge rate between 10%-20% of the C/20 rate.[1]. Absorption glass mat (AGM) batteries are often able to accept higher charge currents, sometimes as high as 35% of their C/20 rate.[1].
It is important that the maximum charge rate is set taking into account all parallel strings in the battery bank.

Example 1: A 48V system has 2 parallel strings of batteries rated at 205Ah @ C/20 rate. The recommended charge rate for this type of battery is 12% of the C/20 rate. What is the maximum charge rate for this battery bank?
Maximum charge rate = C/20 rate × parallel strings × manufacturer maximum C/20 rate percentage
Maximum charge rate = 205Ah x 2 parallel strings x .12 (12%) = 49.2A

Timed absorption phase

The absorption phase of a charge controller can be set to hold the battery bank at a steady voltage for a set duration of time. A sufficiently long absorption phase is desirable as it ensures that the battery receives a full charge under substantial current, which is helpful to ensuring a long cycle life. The appropriate duration of an absorption charge depends upon the battery type, the size of the battery bank, and the maximum available charge rate for the system. A manufacturer may give a recommendation in the manual for the particular battery, but often times other sources must be consulted.

Rolls Battery recommends the following approaches for flooded lead acid (FLA) batteries:[1][2]

Absorption phase time = 0.42 × C ÷ I

  • C = 20 hr rated capacity (total AH capacity of battery bank)
  • I = Maximum available charging current provided by the PV source. This value can be calculated for different charge controller types as follows:
PWM charge controller maximum available charge current = parallel strings × ISC
MPPT charge controller maximum available charge current = Total PV source power rating ÷ nominal system voltage
This number may be limited by the programmed maximum charge rate for the charge controller or by the maximum output current of the charge controller, in which case that value should be used.
Example 1: A battery bank has 2 strings of 6 Volt 6 CS 25P model batteries. These batteries are 853Ah each. The PV source has a maximum available charging current that is 10% of C/20 or 170Ah (2 parallel strings x 853Ah × .10 (10%) = 170Ah).
Absorption phase time = 0.42 × (853Ah x 2 parallel strings) ÷ 170Ah
Absoprtion phase time = 4.2 hours

Rolls Battery recommends the following approaches for valve-regulated lead acid (VRLA) batteries:[3]

Absorption phase time = 0.38 × C ÷ I

  • C = 20 hr rated capacity (total AH capacity of battery bank)
  • I = Maximum available charging current provided by the PV source. This value can be calculated for different charge controller types as follows:
PWM charge controller maximum available charge current = parallel strings × ISC
MPPT charge controller maximum available charge current = Total PV source power rating ÷ nominal system voltage
This number may be limited by the programmed maximum charge rate for the charge controller or by the maximum output current of the charge controller, in which case that value should be used.
Example 1: A battery bank has 2 strings of 6 Volt S6-460 AGM batteries. These batteries are 460Ah each. The PV source has a maximum available charging current that is 15% of C/20 or 120Ah (2 parallel strings x 460Ah × .13 (13%) = 120Ah).
Absorption phase time = 0.38 × (460Ah x 2 parallel strings) ÷ 120Ah
Absorption phase time = 2.9 hours

Finish current absorption phase

The absorption phase of a charge controller can be set to hold the battery bank at a steady voltage using the minimum amount of current necessary to do so until a set minimum current is reached. The appropriate minimum current depends upon the battery type, the size of the battery bank, and the maximum available charge rate for the system. A manufacturer may give a recommendation in the manual for the particular battery, but often times other sources must be consulted.

Trojan Battery recommends the following approaches for flooded lead acid (FLA) batteries:[4]

Absorption finish current = 1-3% of C/20 rate

Example 1: A battery bank has 2 strings of 12 Volt SPRE 12 225 model batteries. These batteries are 225Ah each.
Absorption finish current = .01 × (2 × 225Ah)
Absorption finish current = 4.5A

Trojan Battery recommends the following approaches for valve regulated lead acid (VRLA) batteries:[4]

Absorption finish current = .5% of C/20 rate

Example 1: A battery bank has 2 strings of 12 Volt SAGM 12 205 model batteries. These batteries are 205Ah each.
Absorption finish current = .005 × (2 × 205Ah)
Absorption finish current = 2.05A

Notes/references