Difference between revisions of "Grounding system/es"

From Open Source Solar Project
Jump to navigation Jump to search
(Created page with "Los sistemas sin conexión a tierra no identifican fácilmente fallas a tierra únicas, lo que representa un peligro de seguridad significativo ya que un usuario o técnico pu...")
(Created page with "{| class = "wikitable" border = 1 style = "width: 74%;" !Conductor !Tensión relativo a otros conductores | - |Conductor sin conexión a tierra 1 |Tendrá la tensión de circu...")
Line 88: Line 88:
 
Los sistemas sin conexión a tierra no identifican fácilmente fallas a tierra únicas, lo que representa un peligro de seguridad significativo ya que un usuario o técnico puede no descubrir que existe una falla hasta que se hace contacto con un conductor que no habría tenido voltaje a tierra si no hubiera sido por la falla. También pueden crear otros escenarios de doble falla adicionales que no existen en los sistemas puestos a tierra que requieren un DPCS en todos los cables positivos y negativos de un circuito para ser mitigados adecuadamente.
 
Los sistemas sin conexión a tierra no identifican fácilmente fallas a tierra únicas, lo que representa un peligro de seguridad significativo ya que un usuario o técnico puede no descubrir que existe una falla hasta que se hace contacto con un conductor que no habría tenido voltaje a tierra si no hubiera sido por la falla. También pueden crear otros escenarios de doble falla adicionales que no existen en los sistemas puestos a tierra que requieren un DPCS en todos los cables positivos y negativos de un circuito para ser mitigados adecuadamente.
  
{| class="wikitable" border=1 style="width: 74%;"
+
{| class = "wikitable" border = 1 style = "width: 74%;"
 
!Conductor
 
!Conductor
!Voltage relative to other conductors
+
!Tensión relativo a otros conductores
|-
+
| -
|Ungrounded conductor 1
+
|Conductor sin conexión a tierra 1
|Will have full circuit voltage relative to the other ungrounded conductor. Will have no voltage relative to ground.
+
|Tendrá la tensión de circuito completo en relación con el otro conductor no puesto a tierra. No tendrá una tensión relativo a tierra.
|-
+
| -
|Ungrounded conductor 2
+
|Conductor sin conexión a tierra 2
|Will have full circuit voltage relative to the other ungrounded conductor. Will have no voltage relative to ground.
+
|Tendrá una tensión de circuito completo en relación con el otro conductor no puesto a tierra. No tendrá una tensión relativo a tierra.
|-
+
| -
|Grounding conductors
+
|Conductores de puesta a tierra
|Will have no voltage relative to either ungrounded conductor 1 or ungrounded conductor 2.
+
|No tendrá una tensión en relación con el conductor 1 no puesto a tierra o con el conductor 2 no puesto a tierra.
 
|}
 
|}
  

Revision as of 08:29, 15 February 2021

Other languages:
English • ‎español

Un sistema de puesta a tierra crea una conexión de baja resistencia entre el equipo del sistema y / o un conductor del sistema (llamado un conductor puesto a tierra o conductor neutro) a la tierra mediante el uso de un electrodo de de puesta a tierra. Un sistema de puesta a tierra no es necesario para que funcione un sistema eléctrico, los sistemas de distribución eléctrica en algunos países carecen de cualquier tipo de puesta a tierra y otros tienen complejos sistemas de puesta a tierra con dispositivos de medición adicionales para proteger a los usuarios. Es común que pequeños sistemas FV autónomos carezcan de un sistema de puesta a tierra, ya que aumenta significativamente los costos y el tiempo de instalación y es posible que no produzca beneficios significativos. A medida que aumenta el tamaño de un sismta, el voltaje y el costo del sistema, aumentan los beneficios de un sistema de puesta a tierra. El código eléctrico de cada país contiene información sobre los requisitos y el equipo adecuado para el lugar.[1]

Además, es necesario consultar el manual para cualquier controlador de carga o inversor antes de decidirse por un esquema de puesta a tierra, ya que pueden tener diferentes requisitos de puesta a tierra. Hay algunos casos que vale la pena resaltar aquí:

  • Hay algunos inversores pequeños - onda sinusoidal modificada y onda cuadrada - que se destruirán si se conectan en un sistema que tiene una puesta a tierra de sistea CA y una puesta a tierra CC, ya que no aíslan correctamente su entrada de CC de la salida de CA.
  • Hay algunos controladores de carga que están diseñados para aplicaciones específicas, como instalaciones de telecomunicaciones remotas, que tienen una conexión a tierra positiva.

Terminología de puesta a tierra

Diagrama de cableado de un sistema FV autónomo con un controlador de carga con control de iluminación de CC y un inversor para cargas de CA. El sistema está diseñado con una configuración de puesta a tierra TN-S.

La mayoría de los equipos para sistemas autónomos se pueden utilizar en una variedad de configuraciones de puesta a tierra diferentes; no existe una configuración universal. El enfoque aquí estará en una configuración de puesta a tierra TN-S, que se usa comúnmente para instalaciones FV autónomos. Esta configuración tiene una puesta a tierra de sistema CA con un conductor puesta a tierra (neutro). Hay un conductor puesto a tierra de equipos separada para cada circuito para conectar todas las partes metálicas del sistema que no transportan corriente (gabinetes, cajas de conexiones, componentes principales del sistema, etc).[2] Una configuración de puesta a tierra TN-S tiene dos funciones principales que trabajan juntas:

  • Puesta a tierra del sistema: la conexión a tierra del sistema se crea conectando un conductor de corriente de un sistema eléctrico a tierra. Una conexión a tierra adecuada del sistema proporciona un medio para disipar el exceso de electricidad estática creada por la fricción o los rayos. Esto ayuda a garantizar un voltaje estable y protege el equipo del sistema contra daños.
  • Puesta a tierra del equipo: la conexión a tierra del equipo se crea conectando a tierra todos los componentes metálicos que no transportan corriente de un sistema. Esto crea una ruta para que cualquier corriente creada por una falla, debido a una falla del aislamiento o una conexión suelta, regrese a través de la conexión a tierra del equipo o la tierra al conductor conectado a tierra.

Un sistema de puesta a tierra adecuado requiere varios componentes diferentes que estén conectados entre sí para que el sistema funcione de manera eficaz y segura.

Componente Función - (1) Electrodo de puesta a tierra El punto de conexión entre la tierra y el sistema eléctrico. Es importante que un electrodo de puesta a tierra tenga suficiente área de superficie en contacto con la tierra para establecer una buena conexión. Hay muchos tipos diferentes de electrodos de puesta a tierra: varillas de cobre, varillas de acero, placas de cobre, las tuberías metálicas de un edificio o una conexión adecuada a la barra de refuerzo utilizada en los cimientos de una edificio. El electrodo de puesta a tierra apropiado variará según el código eléctrico, el edificio y el tipo de suelo. - (2) Conductor de electrodo de puesta a tierra (CEPT) La conexión que va desde el electrodo hasta la ubicación del resto del equipo eléctrico, generalmente un cable que va desde el electrodo de conexión a tierra hasta un embarrado de puesta a tierra en el panel de distribución principal. - (3) Conductor de puesta a tierra de equipos (PTE) La conexión que va desde el embarrado de puesta a tierra en el panel de servicio principal a todos los componentes metálicos que no transportan corriente de un sistema (conducto, carcasa del inversor, carcasa del controlador de carga, gabinetes, etc.). - (4) Puesta a tierra del sistema de CC La conexión entre un conductor portador de corriente CC en un sistema eléctrico y el conductor de electrodo de puesta a tierra - comúnmente realizado a través de un dispositivo de protección de falla a tierra. - (5) Puesta a tierra del sistema de CA La conexión entre un conductor portador de corriente CA en un sistema eléctrico y el conductor del electrodo de puesta a tierra, generalmente se realiza inmediatamente después de la salida del inversor en un embarrado utilizado para el circuito de salida del inversor o en el panel de distribución principal. La conexión se realiza desde el embarrado de puesta a tierra principal al embarrado del conductor puesto a tierra. Hay algunos inversores que vienen con un sistema de tierra interno preestablecido, por ejemplo, cualquiera que viene con un dispositivo de protección de falla a tierra (GFPD) integrado. No se debe crear una segunda conexion a tierra - si hay mas que uno el sistema no funcionará bien.

Es importante conocer varios términos que se utilizan cuando se habla de sistemas FV autónomos y el concepto de puesta a tierra:

Término Definición - Conductor no portador de corriente Un conductor que no está diseñado para transportar corriente regularmente como parte del funcionamiento normal de un sistema eléctrico. Todos los conductores que pertenecen al cableado de puesta a tierra encajan en esta categoría. - Conductor portador de corriente Un conductor destinado a transportar corriente de forma regular como parte del funcionamiento normal de un sistema eléctrico. Todos los circuitos relacionados con la generación de energía, el almacenamiento de energía y la distribución a cargas encajan en esta categoría. - Sistema conectado a tierra Un sistema que tiene una conexión a tierra de CA o CC. El sistema puede ser un sistema con conexión a tierra de CC, un sistema con conexión a tierra de CA o un sistema con conexión a tierra de CA y CC. Hay al menos un conductor de corriente conectado a tierra en el sistema. - Sistema sin conexión a tierra Un sistema que no tiene ningúna puesta a tierra del sistema. No hay ningún conductor puesto a tierra en este tipo de sistema. - Conductor puesto a tierra Un conductor portador de corriente que tiene una conexión establecida a tierra por la puesta de tierra del sistema CC o CA. - Conductor sin conexión a tierra Un conductor portador de corriente que no tiene una conexión establecida a tierra por una tierra del sistema de CA o CC.

Fallas a tierra

Diagrama de cableado de un sistema FV autónomo con un controlador de carga con control de iluminación de CC y un inversor para cargas de CA. Este sistema tiene una falla a tierra de CA.

Una falla a tierra ocurre cuando un conductor portador de corriente de un sistema eléctrico tiene una falla de aislamiento o se suelta de una conexión y hace contacto con algo que tiene una conexión a tierra. Las fallas a tierra pueden ser muy peligrosas porque pueden provocar electrocuciones e incendios, por lo que es importante identificarlas lo antes posible y desactivarlas. Cuando hay una falla a tierra, la corriente se escapa de los cables de un circuito y busca otros caminos para poder completar el circuito. Una persona que agarra algo que ha sido energizado por una falla a tierra puede convertirse en un camino para completar el circuito y electrocutarse. En un sistema debidamente conectado a tierra, el escenario de falla a tierra más común es una falla a tierra entre un conductor portador de corriente no puesto a tierra (conductor negro) y un equipo conectado a un conductor puesto a tierra de equipos (PTE). Una falla a tierra puede ocurrir con un conductor puesto a tierra, pero normalmente no será aparente hasta que haya una segunda falla a tierra que involucre al conductor no puesto a tierra (conductor negro).

La puesta a tierra del sistema y la puesta a tierra de equipos funcionan con dispositivos de protección contra sobrecorriente, dispositivos de protección contra fallas a tierra, dispositivos de corriente residual y los electrónicos del inversor para identificar fallas y deshabilitarlas lo más rápido posible mediante abriendo o aislando el circuito. Este sistema funciona porque una falla en el conductor de conexión a tierra del equipo creará un cortocircuito si hay una resistencia lo suficientemente baja, que activará estos dispositivos y hará que se abre o se aisla el circuito.

Una falla a tierra de CA que involucra a un conductor no puesto a tierra generalmente ocurre de la siguiente manera:

  1. Se produce una falla a tierra entre un equipo conectado a un conductor puesto a tierra de equipos y un conductor no puesto a tierra.
  2. El conductor puesto a tierra de equipos tiene una conexión, debido a la puesta de tierra del sistema, al conductor puesto a tierra del circuito. La corriente lo sigue porque es una ruta de baja resistencia al conductor puesto a tierra, que completa el circuito.
  3. La corriente llega al conductor puesto a tierra y esto crea efectivamente un cortocircuito que hace que el inversor suministre una gran cantidad de corriente al circuito de baja resistencia recién creado.
  4. Este alto flujo de corriente será identificado por la electrónica del inversor, el dispositivo de corriente residual (RCD) o un dispositivo de protección contra sobrecorriente (DPCS) como una falla, lo que hará que uno de ellos se dispare y abre o aisla el circuito. Un RCD o los electrónicos del inversor reaccionará más rápido que un OCPD.

Estos dispositivos solo eliminan el peligro temporalmente, por lo que después de que ocurre una falla a tierra, es necesario hacer un proceso de solución de problemas para localizar la falla y solucionarla.

Sistemas puesto y no puesto a tierra en la práctica

Los conductores portadores de corriente en un circuito se comportarán de manera diferente dependiendo de si están conectados a tierra o no. Los sistemas puestos a tierra y no puestos a tierra tienen cada uno diferentes ventajas y desventajas.

Sistema no puesto a tierra

Un conductor no puesto a tierra en un sistema no puesto a tierra solo tendrá un voltaje en relación con los otros conductores del sistema que tampoco tienen una conexión a tierra, pero no tendrá un voltaje en relación con la tierra. Para que un falla a tierra pase la corriente y dispare un dispositivo de protección contra sobrecorriente o un dispositivo de corriente residual, se requerirán dos fallas a tierra separadas. Esto significa que una persona podría tocar el embarrado de cualquiera de los conductores de forma independiente y estar seguro siempre que no haya fallas.

Los sistemas sin conexión a tierra no identifican fácilmente fallas a tierra únicas, lo que representa un peligro de seguridad significativo ya que un usuario o técnico puede no descubrir que existe una falla hasta que se hace contacto con un conductor que no habría tenido voltaje a tierra si no hubiera sido por la falla. También pueden crear otros escenarios de doble falla adicionales que no existen en los sistemas puestos a tierra que requieren un DPCS en todos los cables positivos y negativos de un circuito para ser mitigados adecuadamente.

Conductor Tensión relativo a otros conductores - Conductor sin conexión a tierra 1 Tendrá la tensión de circuito completo en relación con el otro conductor no puesto a tierra. No tendrá una tensión relativo a tierra. - Conductor sin conexión a tierra 2 Tendrá una tensión de circuito completo en relación con el otro conductor no puesto a tierra. No tendrá una tensión relativo a tierra. - Conductores de puesta a tierra No tendrá una tensión en relación con el conductor 1 no puesto a tierra o con el conductor 2 no puesto a tierra.

Grounded system

An ungrounded conductor in a grounded system will have a voltage relative to the grounded conductor and the ground. For a #Ground fault to pass current and trip a overcurrent protection devices or a residual current device, only one ground faults - between the ungrounded conductor and the ground - will be required. This means in this system that a person could touch the busbar of either the grounded conductor or ground and be safe as long as there is no fault.

Grounded systems are better at readily identifying single ground faults and making users or technicians aware that there is an issue. They also avoid the double-fault scenarios that can be an issue for ungrounded systems.

Conductor Voltage relative to other conductors
Ungrounded conductor Will have full circuit voltage relative to the grounded conductor, ground, and any grounded equipment.
Grounded conductor Will have the full circuit voltage relative to the ungrounded conductor. Will have no voltage relative to ground or any grounded equipment.
Grounding conductors Will have full circuit voltage relative to the ungrounded conductor. Will have no voltage relative to the grounded conductor.

Notes/references

  1. Cahiers Techniques 173: Earthing Systems Worldwide and Evolutions https://www.mikeholt.com/documents/mojofiles/electricalearthingworldwide.pdf
  2. SMA Grounding in Off-grid Systems: Design of TN and TT Off-Grid https://files.sma.de/downloads/SI-OffGrid-Grounding-TI-en-11.pdf