Difference between revisions of "Charge controller/es"

From Open Source Solar Project
Jump to navigation Jump to search
Line 1: Line 1:
 
[[Category:Charge controller]]
 
[[Category:Charge controller]]
 
<languages />
 
<languages />
[[File:Chargecontrollerconnections.png|thumb|right|Un controlador de carga es el punto de conexión entre la fuente FV y el almacenamiento de energía. También puede tener la capacidad de alimentar pequeñas cargas de CC.]]
+
[[File:Chargecontrollerconnections.png|thumb|right|A charge controller is the connection point between the PV source and energy storage. It may also have the capability to power small DC loads.]]
  
El controlador de carga en un sistema fotovoltaico fuera de la red sirve como punto de conexión entre el sistema [[Special:MyLanguage/PV module|fuente FV]] y el [[Special:MyLanguage/Energy storage|almacenamiento de energía]]. Cada tipo de almacenamiento de energía tiene preferencias específicas de carga y descarga que deben tenerse en cuenta para garantizar una vida útil prolongada (consulte el artículo sobre [[Special:MyLanguage/Lead acid battery|Baterías de plomo-ácido]] para obtener detalles específicos). El controlador de carga funciona para administrar la energía entrante de la FV para maximizar la carga cuando las baterías pueden aceptarla y reducirla cuando las baterías comienzan a llenarse. La sobrecarga de una batería hará que los productos químicos y los materiales en la batería se descompongan y generen cantidades significativas de calor, lo que reducirá la vida útil de la batería o dañará permanentemente. La carga insuficiente crónica de una batería es más común y ocurre cuando no se permite que una batería vuelva a un [[Special:MyLanguage/Energy storage#State of charge (SoC)|estado de carga]] completo de forma regular, lo que provocará a una acumulación de [[Special:MyLanguage/Lead acid battery#sulfation|sulfatación]] en las placas de plomo dentro de la batería, lo que con el tiempo reducirá la vida útil de la batería. Un controlador de carga a menudo no puede proteger un sistema de almacenamiento de energía de una descarga excesiva debido al funcionamiento de las cargas, un sistema aútonomo siempre debe incluir un [[Special:MyLanguage/Low voltage disconnect|interruptor de baja tensión]] que esté integrado en el controlador de carga, inversor o es un equipo separado.
+
The charge controller in an off-grid PV system serves as the connection point between the [[Special:MyLanguage/PV module|PV source]] and the [[Special:MyLanguage/Energy storage|energy storage]] system. Every type of energy storage has specific charging and discharging preferences that must be considered to ensure that a long life (See the article on [[Special:MyLanguage/Lead acid battery|lead acid batteries for specific details]]). The charge controller works to manage the incoming power from the PV source to maximize charging when the batteries can accept it and to reduce it when batteries begin nearing full. Overcharging a battery will cause the chemicals and materials in battery to breakdown and generate significant amounts of heat, which will lead to reduced battery life or permanent damage to the battery. Chronic undercharging of a battery is more common and occurs when a battery is not allowed to return to a full [[Special:MyLanguage/Energy storage#State of charge (SoC)|state of charge]] on a regular basis, which will lead to a buildup of [[Special:MyLanguage/Lead acid battery#sulfation|sulfation]] on the lead plates inside of the battery which over time will reduce battery life. A charge controller often cannot protect an energy storage system from over-discharge due to the operation of loads, an off-grid system should always include a [[Special:MyLanguage/Low voltage disconnect|low voltage disconnect]] that is integrated into the charge controller, inverter or is a separate piece of equipment.
  
Hay una variedad de diseños de controladores de carga diferentes en el mercado que varían mucho en capacidad de voltaje y corriente, rendimiento, funcionalidad y costo. Invertir en un controlador de carga de calidad asegurará la longevidad de los otros componentes en un sistema FV fuera de la red.  
+
There are a variety of different charge controller designs on the market that vary greatly in voltage and current capacity, performance, functionality and cost. Investing in a quality charge controller will ensure the longevity of the other components in an off-grid PV system.  
  
El controlador de carga para un sistema fuera de la red debe dimensionarse y seleccionarse en función de la [[Especial:MyLanguage / Load evaluation|evaluación de cargas]] para un sitio en particular.  
+
The charge controller for an off-grid system must will be sized and selected based upon the [[Special:MyLanguage/Load evaluation|load evaluation]] for a particular site. This process must be done in conjunction with the sizing and selection of the [[Special:MyLanguage/PV module|PV source]] - see [[Special:MyLanguage/PV source and charge controller sizing and selection overview|PV source and charge controller sizing and selection overview]] for more information.
[[Special:MyLanguage/PV module|fuente FV]] - ver [[Special:MyLanguage/PV source and charge controller sizing and selection overview|Resumen del proceso de dimensionamiento y selección de la fuente FV y controlador de carga]] para más información.
 
  
==Etapas de carga==
+
==Charging phases==
  
[[File:Chargingphases.png|thumb|right|Las diferentes etapas de carga de un controlador de carga con corriente (I), voltaje (V) y estado de carga (icono de batería).]]
+
[[File:Chargingphases210211.png|thumb|right|The different charging phases of a charge controller with current (I), voltage (V) and state of charge (battery icon): ''(1)'' Bulk phase ''(2)'' Absorption phase ''(3)'' Float phase ''(4)'' Equalization charge]]
Todos los cargadores de baterías para baterías de plomo-ácido, no solo los controladores de carga para sistemas FV, siguen el mismo patrón de carga básico de tres etapas: volumen, absorción y flotación. Un controlador de carga se mueve a través de estas diferentes etapas según los puntos de ajuste de voltaje programados y la temperatura ambiente de la batería o la temperatura ambiente. Los controladores de carga de menor capacidad y menor costo pueden no ofrecer la capacidad de programar los puntos de ajuste de voltaje y dependerán de los valores establecidos por el fabricante. Si el controlador de carga habilita la programación de los puntos de ajuste de voltaje, se debe consultar el manual del usuario para la batería específica ya que los puntos de ajuste de voltaje varían según el fabricante y el tipo de batería [[Special:MyLanguage/Lead acid battery|(FLA, AGM, celda de gel)]].
+
All battery chargers for lead acid batteries, not just charge controllers for PV systems, follow the same basic three stage charging pattern: bulk, absorption, and float. A charge controller moves through these different stages based upon programmed voltage set points and the ambient battery temperature or ambient temperature. Smaller capacity and lower cost charge controllers may not offer the capability to program the voltage set points and will rely on values set by the manufacturer. If the charge controller does enable the programming of the voltage set points, the user manual for that specific battery should be consulted as the voltage set points vary based upon manufacturer and battery type [[Special:MyLanguage/Lead acid battery|(FLA, AGM, gel)]].
  
===Carga abundante===
+
===Bulk phase===
  
Cuando una batería tiene un estado de carga de 0 a 80%, el controlador de carga enviará la corriente completa de la fuente FV al banco de baterías para aumentar el voltaje del sistema. El controlador de carga continuará suministrando corriente sin restringirla hasta que se alcance un cierto voltaje, que normalmente es de alrededor de 14,6-14,8 V para una batería de plomo-ácido de 12 V.
+
When a battery is between 0-80% state of charge, the charge controller will send the full current of the PV source to the battery bank to bring the voltage of the system up. The charge controller will continue supplying full current in bulk mode until a certain voltage is reached, which is typically around 14.6-14.8 V for a 12 V lead acid battery.
  
===Carga de absorción===
+
===Absorption phase===
  
A medida que la batería se llena, aproximadamente al 80% de la carga completa, el controlador de carga cambia al modo de absorción, momento en el que intenta mantener el banco de baterías al voltaje máximo alcanzado durante la etapa de carga abundundante (~ 14,4-14,8 V para un batería de plomo-ácido de 12 V) utilizando la cantidad mínima de corriente necesaria para hacerlo. La cantidad de corriente requerida para mantenerlo al voltaje fijo disminuye. El controlador de carga continuará en este modo hasta que haya transcurrido un período de tiempo establecido o la cantidad de corriente requerida para mantener el banco de baterías a un voltaje fijo disminuya a un mínimo programado. Esto suele ocurrir en alrededor del 95% de la capacidad de la batería.
+
As the battery becomes fuller - at around 80% of full charge - the charge controller switches to absorption mode at which point it attempts to hold the battery bank at the maximum voltage achieved during the bulk charging phase (~14.4-14.8 V for a 12 V lead acid battery) using the minimum amount of current necessary to do so. The amount of current required to hold it at the fixed voltage decreases. The charge controller will continue in this mode until either a set amount of time has passed, or the amount of current required to hold the battery bank at a fixed voltage decreases to a programmed minimum. This typically occurs at around 95% of battery capacity.
  
===Flotación===
+
===Float phase===
  
Una batería que se acerca a la carga completa ya no puede aceptar tanta corriente, por lo que el controlador de carga pasa a la fase de flotación, lo que significa que intenta mantener el banco de baterías a un voltaje más bajo (~ 13.2-13.8 V para una batería de plomo-ácido de 12 V) utilizando la cantidad mínima de corriente necesaria. La carga lenta y gradual puede llevar las baterías a un estado de carga del 100%.
+
A battery nearing complete charge can no longer accept as much current, so the charge controller moves into the float phase, which means that it tries to hold the battery bank at a lower voltage (~13.2-13.8 V for a 12 V lead acid battery) using the minimum amount of current necessary. The slow gradually charge can bring the batteries up to a 100% state of charge.
  
===Ecualización===
+
===Equalization charge===
  
Una carga de ecualización no es una fase de carga estándar, es una sobrecarga planificada de las baterías que puede ayudar a reducir el deterioro a largo plazo de las baterías debido a una acumulación de [[Special:MyLanguage/Lead acid battery#Sulfation|sufultación]] en las placas de plomo internas. El voltaje del banco de baterías se puede aumentar hasta ~ 16,2 V durante un período de tiempo específico. No todos los controladores de carga tienen esta capacidad y ''sólo'' las baterías de plomo-ácido inundadas pueden someterse a una carga de compensación. El usuario debe programar o activar una carga de ecualización y solo debe realizarse un día con mucho sol ya que la sobrecarga requiere más energía de lo normal. Equilibre las baterías de plomo-ácido inundadas al menos una vez al mes durante 2 a 4 horas, más tiempo si sus baterías se han descargado constantemente. <ref name="trojanmaintenance"> Trojan Battery Company - Battery Maintenance https://www.trojanbattery.com/tech-support/battery-maintenance/</ref>
+
An equalization charge is not a standard charging phase, it is a planned over-charge of the batteries that can help to reduce the long-term deterioration of batteries due to a buildup of [[Special:MyLanguage/Lead acid battery#Sulfation|sufultion]] on the lead plates inside. The voltage of the battery bank may be increased as high as ~16.2V for a specified period of time. Not all charge controllers have this capability. ''Only'' flooded lead acid batteries can undergo an equalization charge. The user must either schedule or activate an equalization charge and it should only be done a day with abundant sun as the over-charge will require more energy than normal. Equalize flooded lead acid batteries at least once per month for 2 to 4 hours, longer if your batteries have been consistently undercharged. <ref name="trojanmaintenance"> Trojan Battery Company - Battery Maintenance https://www.trojanbattery.com/tech-support/battery-maintenance/</ref>
  
==Tipos de controladores de carga==
+
==Charge controller types==
  
[[File:PWMMPPT201127.png|thumb|right|Una comparación entre el rendimiento de un controlador de carga PWM y un controlador de carga MPPT con una temperatura de celda del módulo FV de 20°C]]
+
[[File:PWMMPPT201127.png|thumb|right|A comparison between the performance of a PWM charge controller and an MPPT charge controller with a PV module cell temperature of 20°C]]
  
Hay dos tipos principales de controladores de carga utilizados en instalaciones FV autónomos: modulación de ancho de pulso (PWM) y rastreo del punto de máxima potencia (MPPT). Ambos tipos de controladores de carga siguen siendo populares ya que cada uno ofrece distintas ventajas según la aplicación.
+
There are two main types of charge controllers used in off-grid PV installations: pulse width modulation (PWM) and maximum power point tracking (MPPT). Both types of charge controllers continue to be popular as each offers distinct advantages depending upon the application.
  
===Modulación de ancho de pulso (PWM)===
+
===Pulse width modulation (PWM)===
  
Un controlador de carga modulación de ancho de pulso mide el voltaje del sistema de almacenamiento de energía y la temperatura (ambiente o en el banco de baterías) para estimar el estado de carga de la batería y regular la carga. No tiene la capacidad de variar el voltaje de la fuente FV para generar la máxima cantidad de energía como un controlador de carga de rastreo del punto de maxima potencia (MPPT). El controlador de carga y la fuente FV deben funcionar al voltaje del sistema de almacenamiento de energía. Esto significa que la fuente fotovoltaica puede funcionar a un voltaje más alto y suministrar más energía, pero esta energía se perderá ya que este tipo de controlador de carga no ofrece esta funcionalidad.  
+
A PWM charge controller measures the voltage of the battery bank and the temperature (ambient or at the battery bank) to estimate the state of charge of the battery and regulate charging. This type of charge controller can only limit the amount of current that is supplied to the energy storage system. It does not have the ability to vary the voltage of the PV source to get the maximum amount of production like a maximum power point tracking charge controllers. The charge controller and PV source must operate at the voltage of the energy storage system. This means that the PV source may be capable of operating at a higher voltage and supplying more power, but this energy will be lost as this type of charge controller does not offer this functionality.  
  
Como el controlador de carga no puede regular el voltaje de la fuente FV, los módulos y matriz deben diseñarse para funcionar con el voltaje del banco de baterías. Esto significa que la fuente FV tendrá que funcionar a un voltaje relativamente bajo. Hay configuraciones de módulo limitadas que funcionarán correctamente con un controlador de carga PWM:
+
As the charge controller cannot regulate the voltage of PV source, the modules/array must be designed to work with the voltage of the battery bank. This means that the PV source will have to operate at a relatively low voltage. There are limited module configurations that will work properly with a PWM charge controller:
*Un módulo de 36 celdas se denomina módulo nominal de 12 voltios y podrá suministrar un voltaje apropiado a un banco de baterías de 12V. Estos módulos se pueden poner en paralelo para suministrar más energía a un banco de baterías de 12 V o se pueden conectar juntos en serie (2 por cadena en serie para banco de baterías de 24 V y 4 por cadena en serie para un banco de baterías de 48 V).
+
*A 36-cell module is referred to as a 12 volt nominal module and will be able to supply an appropriate voltage to a 12V battery bank. These modules can be put in parallel to supply more power for a 12V battery bank or can be connected together in series (2 per series string for 24V battery bank and 4 per series string for a 48V battery bank).
*Un módulo de 72 celdas se denomina módulo nominal de 24 V y podrá suministrar un voltaje adecuado a un banco de baterías de 24 V. Estos módulos se pueden poner en paralelo para suministrar más energía a un banco de baterías de 24 V o se pueden conectar en serie (2 por cadena en serie para un banco de baterías de 48 V).   
+
*A 72-cell module is referred to as a 24V nominal module and will be able to supply an appropriate voltage to a 24V battery bank. These modules can be put in parallel to supply more power for a 24V battery bank or can be connected in series (2 per series string for a 48V battery bank).   
  
'''Calificaciones''' <br/>
+
'''Ratings'''<br/>
Un controlador de carga PWM se clasificará en términos de voltaje de sistema de CC nominal y corriente máxima. El diseñador del sistema debe eligir la configuración de fuente FV adecuada en función del voltaje nominal del banco de baterías.
+
A PWM charge controller will be rated in terms of nominal DC system voltage and maximum current. The system designer must choose the appropriate PV source configuration based upon nominal voltage of the battery bank.
*Voltaje nominal del sistema de CC: 12 V, 24 V, 48 V
+
*Nominal DC system voltage: 12V, 24V, 48V
*Corriente máxima de la fuente FV: 6A-60A
+
*Maximum PV source current: 6A-60A
  
===Rastreo del punto de máxima potencia (MPPT) ===
+
===Maximum power point tracking (MPPT)===
  
Un controlador de carga MPPT funciona de manera similar a un controlador de carga PWM en que mide el voltaje y la temperatura de la batería para determinar el estado de carga y regular la carga. La diferencia es que un controlador de carga MPPT puede controlar el voltaje de la fuente FV y el voltaje que suministra al banco de baterías utilizando tecnología y electrónica más sofisticadas. Esto puede permitir un mayor rendimiento del sistema en un rango más variable de condiciones y configuraciones. Un controlador de carga MPPT puede aceptar una variedad de diferentes tipos de módulos y configuraciones en serie y paralelo.   
+
A MPPT charge controller works similarly to a PWM charge controller in that it measures voltage of the battery and temperature to determine state of charge and regulate charging. The difference is that an MPPT charge controller can control the voltage of the PV source and the voltage that it supplies to the battery bank using more sophisticated technology and electronics. This can permit higher system performance under a more variable range of conditions and configurations. An MPPT charge controller can accept a variety of different module types and series and parallel configurations.   
  
'''Calificaciones''' <br/>
+
'''Ratings'''<br/>
Un controlador de carga MPPT se clasificará en términos de voltaje nominal del sistema de CC, voltaje máximo de la fuente FV, voltaje mínimo de la fuente PV y corriente máxima de la fuente FV. Un diseñador de sistemas tendrá que diseñar la fuente FV correctamente para poder trabajar dentro de estos parámetros.
+
A MPPT charge controller will be rated in terms of nominal DC system voltage, maximum PV source voltage, minimum PV source voltage and maximum PV source current. A system designer will have to design the PV source properly to be able to work within these parameters.
*Voltaje nominal del sistema de CC: 12 V, 24 V, 48 V
+
*Nominal DC system voltage: 12V, 24V, 48V
*Voltaje máximo de la fuente FV: varía hasta 600 V
+
*Maximum PV source voltage: varies up to 600V
*Voltaje mínimo de la fuente FV: depende del voltaje nominal y el tipo de controlador de carga
+
*Minimum PV source voltage: depends upon nominal voltage and charge controller type
*Corriente máxima de la fuente FV: hasta 100 A +
+
*Maximum PV source current: up to 100A+
  
==Comparación entre PWM y MPPT==
+
==PWM vs MPPT comparison==
  
El controlador de carga ideal para cada aplicación debe decidirse en función de una variedad de factores diferentes:
+
The right charge controller for every application must be decided upon a variety of different factors:
  
#Presupuesto: un controlador de carga MPPT puede costar entre 1,5 y 2 veces más que un controlador de carga PWM, aunque puede haber ahorros si permite el uso de un módulo de 60 celdas o 72 celdas en lugar de un módulo de 36 celdas que normalmente cuesta más, ya que se producen en lotes más pequeños.
+
#Budget - A MPPT charge controller may cost 1.5-2 times as much as a PWM charge controller, although there can be savings if it enables the use of a 60-cell or 72-cell module over a 36-cell module which typically cost more as they are produced in smaller batches.
#Flexibilidad: los controladores de carga PWM solo se pueden usar con módulos de 36 celdas o 72 celdas en configuraciones específicas de [[Special:MyLanguage/Series and parallel|serie y paralelo]] donde el voltaje de operación del [[Special:MyLanguage/PV source|fuente FV]] coincide con el voltaje de carga del [[Special:MyLanguage/Energy storage|sistema de almacenamiento de energía]]. Esto limita la fuente FV a un voltaje de funcionamiento relativamente bajo. Mientras que los controladores de carga MPPT se pueden utilizar con cualquier configuración en serie y en paralelo, siempre que el voltaje y la corriente máximos no excedan la clasificación del controlador de carga. Esta flexibilidad es una ventaja muy importante al diseñar sistemas más grandes.
+
#Flexibility - PWM charge controllers can only be used with 36-cell or 72-cell modules in specific [[Special:MyLanguage/Series and parallel|series and parallel]] configurations where the operating voltage of the [[Special:MyLanguage/PV source|PV source]] matches the charging voltage of the [[Special:MyLanguage/Energy storage|energy storage system]]. This limits the PV source to a relatively low operating voltage. Whereas MPPT charge controllers can be used with any series and parallel configurations as long as the maximum voltage and current do not exceed the rating of the charge controller. This flexibility is an very important advantage when designing larger systems.
#Disponibilidad de los componentes: es posible que algunos tipos de controladores de carga o tipos de módulos no estén disponibles en todas las ubicaciones.
+
#Component availability - Certain charge controller types or module types may not be readily available in all locations.
# Rendimiento: el controlador de carga MPPT funcionará mejor en climas más fríos, ya que pueden aprovechar el voltaje más alto que una módulo FV es capaz de producir.
+
#Performance - MPPT charge controller will perform better in cooler climates as they can take advantage of the higher voltage that a PV module is capable of producing.
# Tamaño del sistema: con un sistema más pequeño, prevalecen las ventajas de un controlador de carga PWM, pero a medida que aumenta el tamaño del sistema, aumentan los beneficios de un controlador de carga MPPT. Con un cierto tamaño de sistema, el cableado adicional requerido con un controlador de carga PWM debido a las conexiones en paralelo y el bajo voltaje se convierte en un problema y un gasto significativo.
+
#System size - With a smaller system the advantages of a PWM charge controller prevail, but as system size increases the benefits of a MPPT charge controller increase. At a certain system size the additional wiring required with a PWM charge controller due to parallel connections and low voltage becomes a significant pain and expense.
  
==Características adicionales de los controladores de carga==
+
==Additional charge controller features==
  
[[File:Tempsensor.png|thumb|right|Un sensor de temperatura debe estar ubicado en el centro de una batería e idealmente cerca del centro del banco de baterías para obtener la lectura más precisa.]]
+
[[File:Tempsensor.png|thumb|right|A temperature sensor should be located in the center of a battery and ideally near the center of the battery bank to get the most accurate reading.]]
  
Hay muchas otras características adicionales que ofrecen los controladores de carga que pueden ser valiosas en un proyecto específico.
+
There are many other additional features that charge controllers offer that may be of value on a specific project.
  
===Interfaz de usuario===
+
===User interface===
  
La interfaz de usuario es importante ya que puede transmitir información vital sobre el estado de carga del sistema de almacenamiento de energía, que los usuarios deben revisar periódicamente para poder ajustar su uso correctamente y proteger el banco de baterías. Se puede integrar una interfaz de usuario y un sistema de monitoreo de calidad con un [[Special:MyLanguage/Shunt|shunt]] para obtener datos más precisos sobre el estado de carga del sistema de almacenamiento de energía. Además, una interfaz de usuario debe evaluarse por cuánta programación le permite realizar al usuario y si permite la revisión de datos históricos del sistema.  
+
The user interface is important as it can conveys vital information about the state of charge of the energy storage system, which users need to revise regularly in order to be able to adjust their usage properly and protect the battery bank. A quality user interface and monitoring system can be integrated with a [[Special:MyLanguage/Shunt]shunt]] for more accurate data aobut the state of charge of the energy storage system. Additionally, a user interface should be assessed for how much programming it allows the user to perform and if it allows the revision of historical system data.  
  
===Programabilidad===
+
===Programmability===
  
Cuanto mayor es la potencia nominal de un controlador de carga, normalmente se permite más programación de usuario para permitir la personalización de acuerdo con las necesidades del usuario final. Hay funciones básicas, como el punto de ajuste para el [[Special:MyLanguage/Low voltage disconnect|interruptor de baja tensión]], y otras funciones más complicadas relacionadas con la carga y el monitoreo de la batería. Consulte [[Special:MyLanguage/Charge controller programming|Programación del controlador de carga]] para obtener más información.
+
The larger the power rating of a charge controller, typically the more user programming is permitted to enable customization according to the end user needs. There are basic functions, like the set point for the [[Special:MyLanguage/Low voltage disconnect|low voltage disconnect]], and other more complicated functions related to battery charging and monitoring. See [[Special:MyLanguage/Charge controller programming|charge controller programming]] for more information.
  
===Sensor de temperatura===
+
===Temperature sensor===
  
La temperatura afecta en gran medida el voltaje de una batería. La temperatura de una batería a menudo varía de la temperatura ambiente, ya que se genera calor a medida que las baterías se cargan y descargan. Por lo tanto, los controladores de carga de mayor calidad ofrecen la opción de conectar un sensor de temperatura adicional que se puede conectar directamente al sistema de almacenamiento de energía para permitir que el controlador de carga ajuste correctamente la carga en función de la temperatura de la batería. Esto puede conducir a un mayor rendimiento y longevidad del sistema.
+
Temperature greatly affects the voltage of a battery. The temperature of a battery often varies from the ambient temperature as heat is generated as batteries charge and discharge. Higher quality charge controllers therefore offer the option to connect an additional temperature sensor that can be connected directly to the battery bank in order to enable the charge controller to properly adjust charging based upon battery temperature. This can lead to increased system performance and longevity.
  
===Adquisición de datos y monitoreo===
+
===Data logging/monitoring===
  
Un sistema de adquisición de datos y monitoreo de datos puede permitir que el controlador de carga comparta o registre datos sobre el desempeño del sistema. El nivel de detalle y la cantidad de tiempo durante el cual un controlador de carga almacena datos varía. La información sobre la producción de energía y el voltaje máximo y mínimo del banco de baterías puede ser muy útil para evaluar cómo se está desempeñando el sistema en esa ubicación, si el usuario está cuidando el sistema correctamente y resolver cualquier problema técnico que pueda surgir. Algunos sistemas también pueden ofrecer la capacidad de monitoreo remoto a través de señales de teléfonos celulares o el internet, lo que puede ser muy útil en aplicaciones remotas si es posible.
+
A data logging/monitoring system can enable the charge controller share or record data about the performance of the system. The level of detail and amount of time for which a charge controller store data varies. Information about energy production and battery bank maximum/minimum voltage can be very useful in assessing how the system is performing in that location, if the user is treating the system properly and resolving any technical issues that may arise. Some systems may also offer the capability of remote monitoring through cell phone signals or the internet, which can be very useful in remote off-grid applications if possible.
  
 
===Shunt===
 
===Shunt===
  
Muchos controladores de carga pueden funcionar con un [[Special:MyLanguage/Shunt| shunt]] para permitir una medición más precisa del banco de baterías [[Special:MyLanguage/Energy storage#State of charge (SOC)|Estado de carga (SoC)]]. La información proporcionada por un shunt permite datos mas precisos para que los usuarios pueden gestionar y cuidar un sistema de una mejor manera.
+
Many charge controllers can function with a [[Special:MyLanguage/Shunt|shunt]] to enable more accurate measurement of battery bank [[Special:MyLanguage/Energy storage#State of charge (SOC)|state of charge (SoC)]]. The information provided by a shunt is more accurate and can allow the users to better manage and take care of their system.
  
===Controlador de iluminación===
+
===Lighting controller===
  
Muchos controladores de carga para sistemas fotovoltaicos aislados más pequeños incluyen un circuito de control de iluminación de CC que se puede utilizar para ayudar a proteger el banco de baterías. Todos los sistemas deben tener algún tipo de [[Special:MyLanguage/Low voltage disconnect|interruptor de baja tensión]] para proteger el banco de baterías y un controlador de iluminación integrado en un controlador de carga puede satisfacer esta necesidad. Un controlador de iluminación en su forma más simple puede desconectar automáticamente las luces y cargas de CC a un cierto voltaje de batería o, en formas más complicadas, puede programarse para encender y ejecutar automáticamente las cargas de iluminación durante ciertas horas.
+
Many charge controllers for smaller off-grid PV systems include a DC lighting control circuit that can be used to help protect the battery bank. All systems should have some type of [[Special:MyLanguage/Low voltage disconnect|low voltage disconnect]] in order to protect the battery bank and an integrated lighting controller in a charge controller can meet this need. A lighting controller in its simplest form may automatically disconnect lights and DC loads at a certain battery voltage or in more complicated forms can be programmed to automatically turn on and run lighting loads during certain hours.
  
==Vida proyectada==
+
== Projected life ==
  
No hay una vida útil proyectada específica para un controlador de carga, ya que varía significativamente según la calidad y las condiciones de uso. Un controlador de carga de baja calidad puede durar solo seis meses antes de fallar, mientras que un controlador de carga de alta calidad utilizado en condiciones óptimas podría durar décadas. Un costo más alto no siempre se traduce directamente en un controlador de carga de alta calidad, ya que hay controladores de carga PWM muy baratos en el mercado que están bien construidos y son duraderos.
+
There is no specific projected life for a charge controller as it varies significantly based upon quality and conditions of use. A low-quality charge controller may only last six months before failing, whereas a high-quality charge controller used under optimal conditions could last decades. Higher cost does not always directly translate into a high-quality charge controller, as there are very cheap PWM charge controllers on the market that are extremely well-built and durable.
  
==Mantenimiento==
+
== Maintenance ==
  
Siempre se debe consultar el manual del usuario de un controlador de carga, pero la mayoría de los controladores de carga no requieren mucho mantenimiento si se utilizan en las condiciones adecuadas. Deben mantenerse libres de polvo, insectos y agua. Las conexiones deben revisarse periódicamente, al menos una vez al año, para asegurarse de que aún estén ajustadas correctamente y no creen una resistencia innecesaria.
+
The user manual for a charge controller should always be consulted, but most charge controllers do not require much maintenance if they are used under proper conditions. They should be kept free of dust, insects, and water. Connections should be periodically revised - at least once a year - to make sure that they are still tightened properly and not creating unnecessary resistance.
  
==Reciclabilidad==
+
== Recyclability ==
  
Los controladores de carga contienen una variedad de materiales y productos químicos diferentes que pueden ser peligrosos si no se eliminan correctamente; deben tratarse como desechos electrónicos.
+
Charge controllers contain a variety of different materials and chemicals that can be hazardous if not disposed of properly - they should be treated as electronic waste.
  
==Notas/referencias==
+
== Notes/references==
 
<references/>
 
<references/>

Revision as of 12:36, 11 February 2021

Other languages:
English • ‎español
A charge controller is the connection point between the PV source and energy storage. It may also have the capability to power small DC loads.

The charge controller in an off-grid PV system serves as the connection point between the PV source and the energy storage system. Every type of energy storage has specific charging and discharging preferences that must be considered to ensure that a long life (See the article on lead acid batteries for specific details). The charge controller works to manage the incoming power from the PV source to maximize charging when the batteries can accept it and to reduce it when batteries begin nearing full. Overcharging a battery will cause the chemicals and materials in battery to breakdown and generate significant amounts of heat, which will lead to reduced battery life or permanent damage to the battery. Chronic undercharging of a battery is more common and occurs when a battery is not allowed to return to a full state of charge on a regular basis, which will lead to a buildup of sulfation on the lead plates inside of the battery which over time will reduce battery life. A charge controller often cannot protect an energy storage system from over-discharge due to the operation of loads, an off-grid system should always include a low voltage disconnect that is integrated into the charge controller, inverter or is a separate piece of equipment.

There are a variety of different charge controller designs on the market that vary greatly in voltage and current capacity, performance, functionality and cost. Investing in a quality charge controller will ensure the longevity of the other components in an off-grid PV system.

The charge controller for an off-grid system must will be sized and selected based upon the load evaluation for a particular site. This process must be done in conjunction with the sizing and selection of the PV source - see PV source and charge controller sizing and selection overview for more information.

Charging phases

The different charging phases of a charge controller with current (I), voltage (V) and state of charge (battery icon): (1) Bulk phase (2) Absorption phase (3) Float phase (4) Equalization charge

All battery chargers for lead acid batteries, not just charge controllers for PV systems, follow the same basic three stage charging pattern: bulk, absorption, and float. A charge controller moves through these different stages based upon programmed voltage set points and the ambient battery temperature or ambient temperature. Smaller capacity and lower cost charge controllers may not offer the capability to program the voltage set points and will rely on values set by the manufacturer. If the charge controller does enable the programming of the voltage set points, the user manual for that specific battery should be consulted as the voltage set points vary based upon manufacturer and battery type (FLA, AGM, gel).

Bulk phase

When a battery is between 0-80% state of charge, the charge controller will send the full current of the PV source to the battery bank to bring the voltage of the system up. The charge controller will continue supplying full current in bulk mode until a certain voltage is reached, which is typically around 14.6-14.8 V for a 12 V lead acid battery.

Absorption phase

As the battery becomes fuller - at around 80% of full charge - the charge controller switches to absorption mode at which point it attempts to hold the battery bank at the maximum voltage achieved during the bulk charging phase (~14.4-14.8 V for a 12 V lead acid battery) using the minimum amount of current necessary to do so. The amount of current required to hold it at the fixed voltage decreases. The charge controller will continue in this mode until either a set amount of time has passed, or the amount of current required to hold the battery bank at a fixed voltage decreases to a programmed minimum. This typically occurs at around 95% of battery capacity.

Float phase

A battery nearing complete charge can no longer accept as much current, so the charge controller moves into the float phase, which means that it tries to hold the battery bank at a lower voltage (~13.2-13.8 V for a 12 V lead acid battery) using the minimum amount of current necessary. The slow gradually charge can bring the batteries up to a 100% state of charge.

Equalization charge

An equalization charge is not a standard charging phase, it is a planned over-charge of the batteries that can help to reduce the long-term deterioration of batteries due to a buildup of sufultion on the lead plates inside. The voltage of the battery bank may be increased as high as ~16.2V for a specified period of time. Not all charge controllers have this capability. Only flooded lead acid batteries can undergo an equalization charge. The user must either schedule or activate an equalization charge and it should only be done a day with abundant sun as the over-charge will require more energy than normal. Equalize flooded lead acid batteries at least once per month for 2 to 4 hours, longer if your batteries have been consistently undercharged. [1]

Charge controller types

A comparison between the performance of a PWM charge controller and an MPPT charge controller with a PV module cell temperature of 20°C

There are two main types of charge controllers used in off-grid PV installations: pulse width modulation (PWM) and maximum power point tracking (MPPT). Both types of charge controllers continue to be popular as each offers distinct advantages depending upon the application.

Pulse width modulation (PWM)

A PWM charge controller measures the voltage of the battery bank and the temperature (ambient or at the battery bank) to estimate the state of charge of the battery and regulate charging. This type of charge controller can only limit the amount of current that is supplied to the energy storage system. It does not have the ability to vary the voltage of the PV source to get the maximum amount of production like a maximum power point tracking charge controllers. The charge controller and PV source must operate at the voltage of the energy storage system. This means that the PV source may be capable of operating at a higher voltage and supplying more power, but this energy will be lost as this type of charge controller does not offer this functionality.

As the charge controller cannot regulate the voltage of PV source, the modules/array must be designed to work with the voltage of the battery bank. This means that the PV source will have to operate at a relatively low voltage. There are limited module configurations that will work properly with a PWM charge controller:

  • A 36-cell module is referred to as a 12 volt nominal module and will be able to supply an appropriate voltage to a 12V battery bank. These modules can be put in parallel to supply more power for a 12V battery bank or can be connected together in series (2 per series string for 24V battery bank and 4 per series string for a 48V battery bank).
  • A 72-cell module is referred to as a 24V nominal module and will be able to supply an appropriate voltage to a 24V battery bank. These modules can be put in parallel to supply more power for a 24V battery bank or can be connected in series (2 per series string for a 48V battery bank).

Ratings
A PWM charge controller will be rated in terms of nominal DC system voltage and maximum current. The system designer must choose the appropriate PV source configuration based upon nominal voltage of the battery bank.

  • Nominal DC system voltage: 12V, 24V, 48V
  • Maximum PV source current: 6A-60A

Maximum power point tracking (MPPT)

A MPPT charge controller works similarly to a PWM charge controller in that it measures voltage of the battery and temperature to determine state of charge and regulate charging. The difference is that an MPPT charge controller can control the voltage of the PV source and the voltage that it supplies to the battery bank using more sophisticated technology and electronics. This can permit higher system performance under a more variable range of conditions and configurations. An MPPT charge controller can accept a variety of different module types and series and parallel configurations.

Ratings
A MPPT charge controller will be rated in terms of nominal DC system voltage, maximum PV source voltage, minimum PV source voltage and maximum PV source current. A system designer will have to design the PV source properly to be able to work within these parameters.

  • Nominal DC system voltage: 12V, 24V, 48V
  • Maximum PV source voltage: varies up to 600V
  • Minimum PV source voltage: depends upon nominal voltage and charge controller type
  • Maximum PV source current: up to 100A+

PWM vs MPPT comparison

The right charge controller for every application must be decided upon a variety of different factors:

  1. Budget - A MPPT charge controller may cost 1.5-2 times as much as a PWM charge controller, although there can be savings if it enables the use of a 60-cell or 72-cell module over a 36-cell module which typically cost more as they are produced in smaller batches.
  2. Flexibility - PWM charge controllers can only be used with 36-cell or 72-cell modules in specific series and parallel configurations where the operating voltage of the PV source matches the charging voltage of the energy storage system. This limits the PV source to a relatively low operating voltage. Whereas MPPT charge controllers can be used with any series and parallel configurations as long as the maximum voltage and current do not exceed the rating of the charge controller. This flexibility is an very important advantage when designing larger systems.
  3. Component availability - Certain charge controller types or module types may not be readily available in all locations.
  4. Performance - MPPT charge controller will perform better in cooler climates as they can take advantage of the higher voltage that a PV module is capable of producing.
  5. System size - With a smaller system the advantages of a PWM charge controller prevail, but as system size increases the benefits of a MPPT charge controller increase. At a certain system size the additional wiring required with a PWM charge controller due to parallel connections and low voltage becomes a significant pain and expense.

Additional charge controller features

A temperature sensor should be located in the center of a battery and ideally near the center of the battery bank to get the most accurate reading.

There are many other additional features that charge controllers offer that may be of value on a specific project.

User interface

The user interface is important as it can conveys vital information about the state of charge of the energy storage system, which users need to revise regularly in order to be able to adjust their usage properly and protect the battery bank. A quality user interface and monitoring system can be integrated with a [[Special:MyLanguage/Shunt]shunt]] for more accurate data aobut the state of charge of the energy storage system. Additionally, a user interface should be assessed for how much programming it allows the user to perform and if it allows the revision of historical system data.

Programmability

The larger the power rating of a charge controller, typically the more user programming is permitted to enable customization according to the end user needs. There are basic functions, like the set point for the low voltage disconnect, and other more complicated functions related to battery charging and monitoring. See charge controller programming for more information.

Temperature sensor

Temperature greatly affects the voltage of a battery. The temperature of a battery often varies from the ambient temperature as heat is generated as batteries charge and discharge. Higher quality charge controllers therefore offer the option to connect an additional temperature sensor that can be connected directly to the battery bank in order to enable the charge controller to properly adjust charging based upon battery temperature. This can lead to increased system performance and longevity.

Data logging/monitoring

A data logging/monitoring system can enable the charge controller share or record data about the performance of the system. The level of detail and amount of time for which a charge controller store data varies. Information about energy production and battery bank maximum/minimum voltage can be very useful in assessing how the system is performing in that location, if the user is treating the system properly and resolving any technical issues that may arise. Some systems may also offer the capability of remote monitoring through cell phone signals or the internet, which can be very useful in remote off-grid applications if possible.

Shunt

Many charge controllers can function with a shunt to enable more accurate measurement of battery bank state of charge (SoC). The information provided by a shunt is more accurate and can allow the users to better manage and take care of their system.

Lighting controller

Many charge controllers for smaller off-grid PV systems include a DC lighting control circuit that can be used to help protect the battery bank. All systems should have some type of low voltage disconnect in order to protect the battery bank and an integrated lighting controller in a charge controller can meet this need. A lighting controller in its simplest form may automatically disconnect lights and DC loads at a certain battery voltage or in more complicated forms can be programmed to automatically turn on and run lighting loads during certain hours.

Projected life

There is no specific projected life for a charge controller as it varies significantly based upon quality and conditions of use. A low-quality charge controller may only last six months before failing, whereas a high-quality charge controller used under optimal conditions could last decades. Higher cost does not always directly translate into a high-quality charge controller, as there are very cheap PWM charge controllers on the market that are extremely well-built and durable.

Maintenance

The user manual for a charge controller should always be consulted, but most charge controllers do not require much maintenance if they are used under proper conditions. They should be kept free of dust, insects, and water. Connections should be periodically revised - at least once a year - to make sure that they are still tightened properly and not creating unnecessary resistance.

Recyclability

Charge controllers contain a variety of different materials and chemicals that can be hazardous if not disposed of properly - they should be treated as electronic waste.

Notes/references

  1. Trojan Battery Company - Battery Maintenance https://www.trojanbattery.com/tech-support/battery-maintenance/