Difference between revisions of "Main Page/en"
(Updating to match new version of source page) |
(Updating to match new version of source page) |
||
Line 1: | Line 1: | ||
− | <strong>Welcome to The Open Source Solar Project</strong> | + | <strong>Welcome to The Open Source Solar Project (OSSP)</strong> |
− | OSSP | + | The sun is the ultimate open energy source and OSSP aims to help everyone harness it. Solar PV in the developing world has been growing at an exponential rate and has managed to provide energy access to millions of people, unfortunately adequate standards and appropriate training programs have not followed suit. Many equipment vendors and installers have little to no training nor are they subject to any form of regulation and end users often have little understanding of the technology. This has lead to the proliferation of many improperly designed PV systems that not only lead to poor end-user experiences but also represent a safety risk. This website is an effort to improve small-scale battery-based (SSBB) solar PV system design, safety, and user experiences in these areas by providing appropriate information, resources and tools on the universal, basic aspects of off-grid system design and installation in these contexts. OSSP hopes to serve as both a direct resource in these areas (via smart phones and internet in hub cities) and as a readily-adaptable base for the development of low-cost training materials and programs that are tailored to the needs and standards of a particular area. Please reach out to alex@opensourcesolar.org if you are interested in collaborating, have found mistakes, would like to contribute or need assistance creating training materials. |
− | + | Aims of OSSP: | |
− | *Provide | + | *Provide an appropriate level of detail for each topic in a way that is practical and accessible for an audience with a varying level of technology literacy. |
+ | *Provide tools to simplify the design process that are independent of any manufacturer. | ||
*Present universal concepts in a way that is universal. Information or resources that are location specific should be added to a country page. | *Present universal concepts in a way that is universal. Information or resources that are location specific should be added to a country page. | ||
− | * | + | *Utilize well-designed graphics that include minimal text to enable easy adapatation and translation using captions. |
− | + | ||
+ | Be advised that design, installation, and maintenance work should only be performed by qualified individuals in accordance with local codes/laws. There is no guarantee that the information provided on this website is accurate or complete - use it at your own risk. It is intended to serve as an educational/reference resource and not intended to qualify anyone to perform any type of electrical work. Appropriate hands on training is required in order to safely work with electricity and PV systems. See [[Training providers]] for a list of recommended training providers. | ||
Consult the [https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Contents User's Guide] for information on using the wiki software. | Consult the [https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Contents User's Guide] for information on using the wiki software. | ||
− | == | + | ==Basic concepts== |
− | + | *[[What is an off-grid PV system?|What is an off-grid (stand-alone) PV system?]]<br /> | |
− | < | + | *[[Types of PV systems|Types of PV systems]]<br /> |
− | < | + | *[[Basic stand-alone PV system components|Basic stand-alone PV system components]]<br /> |
− | < | + | *[[Electricity and energy|Electricity and energy]]<br /> |
− | < | + | *[[Types of electricity|Types of electricity]]<br /> |
− | < | + | *[[Voltage and frequency by country|Voltage and frequency by country]]<br /> |
+ | *[[Power flow between components|Power flow between components]]<br /> | ||
+ | *[[Series and parallel|Series and parallel]]<br /> | ||
+ | *[[Electrical codes|Electrical codes]]<br /> | ||
+ | *[[Electrical safety|Electrical safety]]<br /> | ||
+ | *[[Multimeters|Multimeters]]<br /> | ||
+ | |||
+ | ==System components== | ||
+ | ====Certifications and ratings==== | ||
+ | *[[Equipment certification|Equipment certification]]<br /> | ||
+ | *[[Weather rating|Weather rating]]<br /> | ||
+ | |||
+ | ====PV source==== | ||
+ | *[[PV module|PV module (PV source, solar panel)]]<br /> | ||
+ | *[[Insolation|Insolation (peak sun hours)]]<br /> | ||
+ | *[[Tilt and azimuth|Tilt and azimuth]]<br /> | ||
+ | *[[Shading|Shading]]<br /> | ||
+ | *[[Module connectors|Module connectors]]<br /> | ||
+ | *[[Combiner box|Combiner box]]<br /> | ||
+ | ====Energy storage==== | ||
+ | *[[Energy storage|Energy storage]]<br /> | ||
+ | *[[Lead acid battery|Lead acid battery]]<br /> | ||
+ | *[[Lithium-ion battery|Lithium-ion battery]]<br /> | ||
+ | *[[Shunt|Shunt]]<br /> | ||
+ | |||
+ | ====Charge controller==== | ||
+ | *[[Charge controller|Charge controller]]<br /> | ||
+ | ====Inverter==== | ||
+ | *[[Inverter|Inverter]]<br /> | ||
+ | ====Power distribution==== | ||
+ | *[[Distribution panel|Distribution panel]]<br /> | ||
+ | *[[DIN rail|DIN rail]]<br /> | ||
+ | *[[Busbar|Busbar]]<br /> | ||
+ | *[[Wire terminal|Wire terminal]]<br /> | ||
+ | *[[Twist-on wire connector|Twist-on wire connector (wire nut, marrette)]]<br /> | ||
+ | *[[Switch|Switch]]<br /> | ||
+ | *[[Outlet|Outlet]]<br /> | ||
+ | |||
+ | ====Mounting system==== | ||
+ | *[[Mounting system|Mounting system]]<br /> | ||
+ | ====Conductors==== | ||
+ | *[[Types of conductors|Types of conductors]]<br /> | ||
+ | *[[Conductor size|Conductor size]]<br /> | ||
+ | *[[Wire color|Wire color]]<br /> | ||
+ | |||
+ | ====Physical conductor protection==== | ||
+ | *[[Conduit|Conduit]]<br /> | ||
+ | *[[Junction box|Junction box]]<br /> | ||
+ | ====Protection devices and disconnects==== | ||
+ | *[[Overcurrent protection device|Overcurrent protection device (OCPD)]]<br /> | ||
+ | *[[Disconnects|Disconnects]]<br /> | ||
+ | *[[Residual current device|Residual current device (RCD or GFCI)]]<br /> | ||
+ | *[[Ground fault protection device|Ground fault protection device (GFPD)]]<br /> | ||
+ | ====Grounding==== | ||
+ | *[[Grounding system|Grounding system]]<br /> | ||
+ | |||
+ | ====Loads (lighting and appliances)==== | ||
+ | *[[Lighting|Lighting]]<br /> | ||
+ | *[[Energy efficient loads|Energy efficient loads]]<br /> | ||
+ | *[[Low voltage disconnect|Low voltage disconnect]]<br /> | ||
+ | *[[DC-DC converter|DC-DC converter]]<br /> | ||
+ | |||
+ | ==System design== | ||
+ | ===Design tools=== | ||
+ | [[Open source solar project stand-alone system design tool|Open Source Solar Project stand-alone system design tool]] | ||
+ | |||
+ | ===Background=== | ||
+ | *[[Design process overview|Design process overview]]<br /> | ||
+ | *[[Stand-alone system configurations|Stand-alone system configurations]]<br /> | ||
+ | *[[DC system voltage|DC system voltage]]<br /> | ||
+ | *[[Voltage drop|Voltage drop]]<br /> | ||
+ | *[[Surge loads|Surge loads]]<br /> | ||
+ | *[[Power factor|Power factor]]<br /> | ||
+ | *[[Duty cycle|Duty cycle]]<br/> | ||
+ | |||
+ | ===Site evaluation=== | ||
+ | *[[Site evaluation process overview|Site evaluation process overview]]<br /> | ||
+ | ====Simplified design process==== | ||
+ | *[[Simplified physical evaluation|Simplified physical evaluation]]<br /> | ||
+ | *[[Simplified load evaluation|Simplified load evaluation]]<br /> | ||
+ | *[[Simplified weather and solar resource evaluation|Simplified weather and solar resource evaluation]]<br /> | ||
+ | ====Detailed design process==== | ||
+ | *[[Load evaluation|Load evaluation]]<br /> | ||
+ | *[[Physical evaluation|Physical evaluation]]<br /> | ||
+ | *[[Weather and solar resource evaluation|Weather and solar resource evaluation]]<br /> | ||
+ | *[[Load and solar resource comparison|Load and solar resource comparison]]<br /> | ||
+ | |||
+ | ===Design parameters=== | ||
+ | ====Detailed==== | ||
+ | *[[Design parameter overview|Design parameter overview]]<br /> | ||
+ | *[[Irradiance safety parameter|Irradiance safety parameter]]<br /> | ||
+ | *[[Continuous duty safety parameter|Continous duty safety parameter]]<br /> | ||
+ | *[[Low voltage disconnect parameter|Low voltage disconnect parameter]]<br /> | ||
+ | |||
+ | ===Energy storage sizing and selection=== | ||
+ | ====Simplified==== | ||
+ | *[[Simplified energy storage sizing and selection|Simplified energy storage sizing and selection]]<br /> | ||
+ | ====Detailed==== | ||
+ | *[[Energy storage sizing and selection|Energy storage sizing and selection]]<br /> | ||
+ | |||
+ | ===PV source and charge controller sizing and selection=== | ||
+ | *[[PV source and charge controller sizing and selection overview|PV source and charge controller sizing and selection overview]]<br /> | ||
+ | ====Simplified==== | ||
+ | *[[Simplified minimum PV source size|Simplified minimum PV source size]]<br /> | ||
+ | *[[Simplified PWM charge controller sizing and selection|Simplified PWM charge controller sizing and selection]]<br /> | ||
+ | *[[Simplified MPPT charge controller sizing and selection|Simplified MPPT charge controller sizing and selection]]<br /> | ||
+ | ====Detailed==== | ||
+ | *[[Minimum PV source size|Minimum PV source size]]<br /> | ||
+ | *[[PWM charge controller sizing and selection|PWM charge controller sizing and selection]]<br /> | ||
+ | *[[MPPT charge controller sizing and selection|MPPT charge controller sizing and selection]]<br /> | ||
+ | |||
+ | ===Inverter sizing and selection=== | ||
+ | ====Simplified==== | ||
+ | *[[Simplified inverter sizing and selection|Simplified inverter sizing and selection]]<br /> | ||
+ | ====Detailed==== | ||
+ | *[[Inverter sizing and selection|Inverter sizing and selection]]<br /> | ||
+ | |||
+ | ===Wire, overcurrent protection, and disconnect sizing and selection=== | ||
+ | ====Simplified==== | ||
+ | *[[Simplified wire, overcurrent protection, and disconnect sizing and selection|Simplified wire, overcurrent protection, and disconnect sizing and selection]] | ||
+ | ====Detailed==== | ||
+ | *[[Wire, overcurrent protection, and disconnect sizing and selection|Wire, overcurrent protection, and disconnect sizing and selection]] | ||
+ | |||
+ | ===Grounding system sizing and selection=== | ||
+ | ====Simplified==== | ||
+ | *[[Simplified grounding system sizing and selection|Simplified grounding system sizing and selection]]<br /> | ||
+ | ====Detailed==== | ||
+ | *[[Grounding system sizing and selection|Grounding system sizing and selection]]<br /> | ||
+ | |||
+ | ==Design examples== | ||
+ | *[[Detailed DC system design|Detailed DC system design]]<br /> | ||
+ | *[[Detailed AC/DC system design|Detailed AC/DC system design]]<br /> | ||
+ | *[[Detailed AC system design|Detailed AC system design]]<br /> | ||
+ | |||
+ | ==System installation== | ||
+ | *[[Principles of installation|Principles of installation]]<br /> | ||
+ | *[[Equipment clearances and safe working space|Equipment clearances and safe working space]]<br /> | ||
+ | *[[Wiring practices|Wiring practices]]<br /> | ||
+ | *[[Wiring basic load circuits|Wiring basic load circuits]]<br /> | ||
+ | *[[Battery wiring|Battery wiring]]<br/> | ||
+ | *[[Installing module connectors|Installing module connectors]]<br /> | ||
+ | *[[Charge controller programming|Charge controller programming]]<br /> | ||
+ | *[[Inverter programming|Inverter programming]]<br /> | ||
+ | *[[Labeling|Labeling]]<br /> | ||
+ | *[[Commissioning|Commissioning]]<br /> | ||
+ | |||
+ | ==Operations and maintenance== | ||
+ | *[[Troubleshooting|Troubleshooting]] | ||
+ | |||
+ | ==Resources== | ||
+ | *[[Resources|Resources]]<br /> | ||
+ | *[[Training providers|Training providers]]<br /> | ||
+ | |||
+ | ==Country pages== | ||
+ | *[[Peru|Peru]] | ||
+ | *[[United States|United States]] |
Revision as of 06:57, 5 February 2021
Welcome to The Open Source Solar Project (OSSP)
The sun is the ultimate open energy source and OSSP aims to help everyone harness it. Solar PV in the developing world has been growing at an exponential rate and has managed to provide energy access to millions of people, unfortunately adequate standards and appropriate training programs have not followed suit. Many equipment vendors and installers have little to no training nor are they subject to any form of regulation and end users often have little understanding of the technology. This has lead to the proliferation of many improperly designed PV systems that not only lead to poor end-user experiences but also represent a safety risk. This website is an effort to improve small-scale battery-based (SSBB) solar PV system design, safety, and user experiences in these areas by providing appropriate information, resources and tools on the universal, basic aspects of off-grid system design and installation in these contexts. OSSP hopes to serve as both a direct resource in these areas (via smart phones and internet in hub cities) and as a readily-adaptable base for the development of low-cost training materials and programs that are tailored to the needs and standards of a particular area. Please reach out to alex@opensourcesolar.org if you are interested in collaborating, have found mistakes, would like to contribute or need assistance creating training materials.
Aims of OSSP:
- Provide an appropriate level of detail for each topic in a way that is practical and accessible for an audience with a varying level of technology literacy.
- Provide tools to simplify the design process that are independent of any manufacturer.
- Present universal concepts in a way that is universal. Information or resources that are location specific should be added to a country page.
- Utilize well-designed graphics that include minimal text to enable easy adapatation and translation using captions.
Be advised that design, installation, and maintenance work should only be performed by qualified individuals in accordance with local codes/laws. There is no guarantee that the information provided on this website is accurate or complete - use it at your own risk. It is intended to serve as an educational/reference resource and not intended to qualify anyone to perform any type of electrical work. Appropriate hands on training is required in order to safely work with electricity and PV systems. See Training providers for a list of recommended training providers.
Consult the User's Guide for information on using the wiki software.
Contents
- 1 Basic concepts
- 2 System components
- 3 System design
- 3.1 Design tools
- 3.2 Background
- 3.3 Site evaluation
- 3.4 Design parameters
- 3.5 Energy storage sizing and selection
- 3.6 PV source and charge controller sizing and selection
- 3.7 Inverter sizing and selection
- 3.8 Wire, overcurrent protection, and disconnect sizing and selection
- 3.9 Grounding system sizing and selection
- 4 Design examples
- 5 System installation
- 6 Operations and maintenance
- 7 Resources
- 8 Country pages
Basic concepts
- What is an off-grid (stand-alone) PV system?
- Types of PV systems
- Basic stand-alone PV system components
- Electricity and energy
- Types of electricity
- Voltage and frequency by country
- Power flow between components
- Series and parallel
- Electrical codes
- Electrical safety
- Multimeters
System components
Certifications and ratings
PV source
- PV module (PV source, solar panel)
- Insolation (peak sun hours)
- Tilt and azimuth
- Shading
- Module connectors
- Combiner box
Energy storage
Charge controller
Inverter
Power distribution
- Distribution panel
- DIN rail
- Busbar
- Wire terminal
- Twist-on wire connector (wire nut, marrette)
- Switch
- Outlet
Mounting system
Conductors
Physical conductor protection
Protection devices and disconnects
- Overcurrent protection device (OCPD)
- Disconnects
- Residual current device (RCD or GFCI)
- Ground fault protection device (GFPD)
Grounding
Loads (lighting and appliances)
System design
Design tools
Open Source Solar Project stand-alone system design tool
Background
- Design process overview
- Stand-alone system configurations
- DC system voltage
- Voltage drop
- Surge loads
- Power factor
- Duty cycle
Site evaluation
Simplified design process
- Simplified physical evaluation
- Simplified load evaluation
- Simplified weather and solar resource evaluation
Detailed design process
- Load evaluation
- Physical evaluation
- Weather and solar resource evaluation
- Load and solar resource comparison
Design parameters
Detailed
- Design parameter overview
- Irradiance safety parameter
- Continous duty safety parameter
- Low voltage disconnect parameter
Energy storage sizing and selection
Simplified
Detailed
PV source and charge controller sizing and selection
Simplified
- Simplified minimum PV source size
- Simplified PWM charge controller sizing and selection
- Simplified MPPT charge controller sizing and selection
Detailed
- Minimum PV source size
- PWM charge controller sizing and selection
- MPPT charge controller sizing and selection
Inverter sizing and selection
Simplified
Detailed
Wire, overcurrent protection, and disconnect sizing and selection
Simplified
Detailed
Grounding system sizing and selection
Simplified
Detailed
Design examples
System installation
- Principles of installation
- Equipment clearances and safe working space
- Wiring practices
- Wiring basic load circuits
- Battery wiring
- Installing module connectors
- Charge controller programming
- Inverter programming
- Labeling
- Commissioning