Difference between revisions of "Grounding system/es"

From Open Source Solar Project
Jump to navigation Jump to search
(Created page with "Una falla a tierra ocurre cuando un conductor portador de corriente de un sistema eléctrico tiene una falla de aislamiento o se suelta de una conexión y hace contacto con al...")
Line 25: Line 25:
 
| El punto de conexión entre la tierra y el sistema eléctrico. Es importante que un electrodo de puesta a tierra tenga suficiente área de superficie en contacto con la tierra para establecer una buena conexión. Hay muchos tipos diferentes de [[Special:MyLanguage /Grounding system sizing and selection|electrodos de puesta a tierra]]: varillas de cobre, varillas de acero, placas de cobre, las tuberías metálicas de un edificio o una conexión adecuada a la barra de refuerzo utilizada en los cimientos de una edificio. El electrodo de puesta a tierra apropiado variará según el [[Special: MyLanguage/Electrical codes|código eléctrico]], el edificio y el tipo de suelo.
 
| El punto de conexión entre la tierra y el sistema eléctrico. Es importante que un electrodo de puesta a tierra tenga suficiente área de superficie en contacto con la tierra para establecer una buena conexión. Hay muchos tipos diferentes de [[Special:MyLanguage /Grounding system sizing and selection|electrodos de puesta a tierra]]: varillas de cobre, varillas de acero, placas de cobre, las tuberías metálicas de un edificio o una conexión adecuada a la barra de refuerzo utilizada en los cimientos de una edificio. El electrodo de puesta a tierra apropiado variará según el [[Special: MyLanguage/Electrical codes|código eléctrico]], el edificio y el tipo de suelo.
 
| -
 
| -
|(2) Conductor de electrodo de puesta a tierra (GEC)
+
|(2) Conductor de electrodo de puesta a tierra (CEPT)
 
| La conexión que va desde el electrodo hasta la ubicación del resto del equipo eléctrico, generalmente un cable que va desde el electrodo de conexión a tierra hasta un embarrado de puesta a tierra en el panel de distribución principal.
 
| La conexión que va desde el electrodo hasta la ubicación del resto del equipo eléctrico, generalmente un cable que va desde el electrodo de conexión a tierra hasta un embarrado de puesta a tierra en el panel de distribución principal.
 
| -
 
| -
|(3) Conductor de puesta a tierra de equipos (EGC)
+
|(3) Conductor de puesta a tierra de equipos (PTE)
 
| La conexión que va desde el embarrado de puesta a tierra en el panel de servicio principal a todos los componentes metálicos que no transportan corriente de un sistema (conducto, carcasa del inversor, carcasa del controlador de carga, gabinetes, etc.).
 
| La conexión que va desde el embarrado de puesta a tierra en el panel de servicio principal a todos los componentes metálicos que no transportan corriente de un sistema (conducto, carcasa del inversor, carcasa del controlador de carga, gabinetes, etc.).
 
| -
 
| -

Revision as of 08:12, 15 February 2021

Other languages:
English • ‎español

Un sistema de puesta a tierra crea una conexión de baja resistencia entre el equipo del sistema y / o un conductor del sistema (llamado un conductor puesto a tierra o conductor neutro) a la tierra mediante el uso de un electrodo de de puesta a tierra. Un sistema de puesta a tierra no es necesario para que funcione un sistema eléctrico, los sistemas de distribución eléctrica en algunos países carecen de cualquier tipo de puesta a tierra y otros tienen complejos sistemas de puesta a tierra con dispositivos de medición adicionales para proteger a los usuarios. Es común que pequeños sistemas FV autónomos carezcan de un sistema de puesta a tierra, ya que aumenta significativamente los costos y el tiempo de instalación y es posible que no produzca beneficios significativos. A medida que aumenta el tamaño de un sismta, el voltaje y el costo del sistema, aumentan los beneficios de un sistema de puesta a tierra. El código eléctrico de cada país contiene información sobre los requisitos y el equipo adecuado para el lugar.[1]

Además, es necesario consultar el manual para cualquier controlador de carga o inversor antes de decidirse por un esquema de puesta a tierra, ya que pueden tener diferentes requisitos de puesta a tierra. Hay algunos casos que vale la pena resaltar aquí:

  • Hay algunos inversores pequeños - onda sinusoidal modificada y onda cuadrada - que se destruirán si se conectan en un sistema que tiene una puesta a tierra de sistea CA y una puesta a tierra CC, ya que no aíslan correctamente su entrada de CC de la salida de CA.
  • Hay algunos controladores de carga que están diseñados para aplicaciones específicas, como instalaciones de telecomunicaciones remotas, que tienen una conexión a tierra positiva.

Terminología de puesta a tierra

Diagrama de cableado de un sistema FV autónomo con un controlador de carga con control de iluminación de CC y un inversor para cargas de CA. El sistema está diseñado con una configuración de puesta a tierra TN-S.

La mayoría de los equipos para sistemas autónomos se pueden utilizar en una variedad de configuraciones de puesta a tierra diferentes; no existe una configuración universal. El enfoque aquí estará en una configuración de puesta a tierra TN-S, que se usa comúnmente para instalaciones FV autónomos. Esta configuración tiene una puesta a tierra de sistema CA con un conductor puesta a tierra (neutro). Hay un conductor puesto a tierra de equipos separada para cada circuito para conectar todas las partes metálicas del sistema que no transportan corriente (gabinetes, cajas de conexiones, componentes principales del sistema, etc).[2] Una configuración de puesta a tierra TN-S tiene dos funciones principales que trabajan juntas:

  • Puesta a tierra del sistema: la conexión a tierra del sistema se crea conectando un conductor de corriente de un sistema eléctrico a tierra. Una conexión a tierra adecuada del sistema proporciona un medio para disipar el exceso de electricidad estática creada por la fricción o los rayos. Esto ayuda a garantizar un voltaje estable y protege el equipo del sistema contra daños.
  • Puesta a tierra del equipo: la conexión a tierra del equipo se crea conectando a tierra todos los componentes metálicos que no transportan corriente de un sistema. Esto crea una ruta para que cualquier corriente creada por una falla, debido a una falla del aislamiento o una conexión suelta, regrese a través de la conexión a tierra del equipo o la tierra al conductor conectado a tierra.

Un sistema de puesta a tierra adecuado requiere varios componentes diferentes que estén conectados entre sí para que el sistema funcione de manera eficaz y segura.

Componente Función - (1) Electrodo de puesta a tierra El punto de conexión entre la tierra y el sistema eléctrico. Es importante que un electrodo de puesta a tierra tenga suficiente área de superficie en contacto con la tierra para establecer una buena conexión. Hay muchos tipos diferentes de electrodos de puesta a tierra: varillas de cobre, varillas de acero, placas de cobre, las tuberías metálicas de un edificio o una conexión adecuada a la barra de refuerzo utilizada en los cimientos de una edificio. El electrodo de puesta a tierra apropiado variará según el código eléctrico, el edificio y el tipo de suelo. - (2) Conductor de electrodo de puesta a tierra (CEPT) La conexión que va desde el electrodo hasta la ubicación del resto del equipo eléctrico, generalmente un cable que va desde el electrodo de conexión a tierra hasta un embarrado de puesta a tierra en el panel de distribución principal. - (3) Conductor de puesta a tierra de equipos (PTE) La conexión que va desde el embarrado de puesta a tierra en el panel de servicio principal a todos los componentes metálicos que no transportan corriente de un sistema (conducto, carcasa del inversor, carcasa del controlador de carga, gabinetes, etc.). - (4) Puesta a tierra del sistema de CC La conexión entre un conductor portador de corriente CC en un sistema eléctrico y el conductor de electrodo de puesta a tierra - comúnmente realizado a través de un dispositivo de protección de falla a tierra. - (5) Puesta a tierra del sistema de CA La conexión entre un conductor portador de corriente CA en un sistema eléctrico y el conductor del electrodo de puesta a tierra, generalmente se realiza inmediatamente después de la salida del inversor en un embarrado utilizado para el circuito de salida del inversor o en el panel de distribución principal. La conexión se realiza desde el embarrado de puesta a tierra principal al embarrado del conductor puesto a tierra. Hay algunos inversores que vienen con un sistema de tierra interno preestablecido, por ejemplo, cualquiera que viene con un dispositivo de protección de falla a tierra (GFPD) integrado. No se debe crear una segunda conexion a tierra - si hay mas que uno el sistema no funcionará bien.

Es importante conocer varios términos que se utilizan cuando se habla de sistemas FV autónomos y el concepto de puesta a tierra:

Término Definición - Conductor no portador de corriente Un conductor que no está diseñado para transportar corriente regularmente como parte del funcionamiento normal de un sistema eléctrico. Todos los conductores que pertenecen al cableado de puesta a tierra encajan en esta categoría. - Conductor portador de corriente Un conductor destinado a transportar corriente de forma regular como parte del funcionamiento normal de un sistema eléctrico. Todos los circuitos relacionados con la generación de energía, el almacenamiento de energía y la distribución a cargas encajan en esta categoría. - Sistema conectado a tierra Un sistema que tiene una conexión a tierra de CA o CC. El sistema puede ser un sistema con conexión a tierra de CC, un sistema con conexión a tierra de CA o un sistema con conexión a tierra de CA y CC. Hay al menos un conductor de corriente conectado a tierra en el sistema. - Sistema sin conexión a tierra Un sistema que no tiene ningúna puesta a tierra del sistema. No hay ningún conductor puesto a tierra en este tipo de sistema. - Conductor puesto a tierra Un conductor portador de corriente que tiene una conexión establecida a tierra por la puesta de tierra del sistema CC o CA. - Conductor sin conexión a tierra Un conductor portador de corriente que no tiene una conexión establecida a tierra por una tierra del sistema de CA o CC.

Fallas a tierra

Diagrama de cableado de un sistema FV autónomo con un controlador de carga con control de iluminación de CC y un inversor para cargas de CA. Este sistema tiene una falla a tierra de CA.

Una falla a tierra ocurre cuando un conductor portador de corriente de un sistema eléctrico tiene una falla de aislamiento o se suelta de una conexión y hace contacto con algo que tiene una conexión a tierra. Las fallas a tierra pueden ser muy peligrosas porque pueden provocar electrocuciones e incendios, por lo que es importante identificarlas lo antes posible y desactivarlas. Cuando hay una falla a tierra, la corriente se escapa de los cables de un circuito y busca otros caminos para poder completar el circuito. Una persona que agarra algo que ha sido energizado por una falla a tierra puede convertirse en un camino para completar el circuito y electrocutarse. En un sistema debidamente conectado a tierra, el escenario de falla a tierra más común es una falla a tierra entre un conductor portador de corriente no puesto a tierra (cable negro) y un equipo conectado a un conductor puesto a tierra de equipos (PTE). Una falla a tierra puede ocurrir con un conductor puesto a tierra, pero normalmente no será aparente hasta que haya una segunda falla a tierra que involucre al conductor no puesto a tierra (cable negro).

System grounding and equipment grounding work with overcurrent protection devices, ground fault protection devices, residual current devices and inverter electronics to identify faults and disable them as quickly as possible by opening (disconnecting) the circuit. This system functions because a fault to an equipment grounding conductor will create a short circuit if there is low enough resistance, which will activate these devices and cause them to open (disconnect) the circuit.

An AC ground fault involving an ungrounded conductor typically occurs as follows:

  1. A ground fault occurs between a grounded piece of equipment and an ungrounded conductor (wire).
  2. The equipment grounding conductor has a connection - due to the system ground - to the grounded conductor. The current follows it because it is a low resistance path to the grounded conductor, which completes the circuit.
  3. The current reaches the grounded conductor and this effectively creates a short-circuit which causes the inverter to supply large a amount of current to the newly created low-resistasnce circuit.
  4. This high current flow will be identified by the inverter electronics, residual current device (RCD) or an overcurrent protection device (OCPD) as a fault, which will cause the one of them to trip and open (disconnect) the circuit. A RCD or inverter electronics will react quicker than an OCPD.

These devices only temporarily remove the hazard, thus after a ground fault occurs it is necessary to carefully troubleshoot the system to locate the fault and fix it.

Grounded and ungrounded systems in practice

The current carrying conductors in a circuit will behave differently depending upon whether they are grounded or not. Grounded and ungrounded systems each carry different advantages and disadvantages.

Ungrounded system

An ungrounded conductor in an ungrounded system will only have a voltage relative to the other ungrounded conductors in the system, but will not have a voltage relative to ground. For a ground fault to pass current and trip a overcurrent protection devices or a residual current device, two seperate ground faults will be required. This means that a person could touch the busbar of either conductor independently at be safe as long as there is no fault.

Ungrounded systems do not readily identify single ground faults, which represents a significant safety hazard as a user or technician may not discover that a fault exists until contact is made with a conductor that would have had no voltage to ground had it not been for the fault. They can also create other additional double-fault scenarios that do not exist in grounded systems that require an overcurrent protection device on all positive and negative wires in a circuit to be properly mitigated.

Conductor Voltage relative to other conductors
Ungrounded conductor 1 Will have full circuit voltage relative to the other ungrounded conductor. Will have no voltage relative to ground.
Ungrounded conductor 2 Will have full circuit voltage relative to the other ungrounded conductor. Will have no voltage relative to ground.
Grounding conductors Will have no voltage relative to either ungrounded conductor 1 or ungrounded conductor 2.

Grounded system

An ungrounded conductor in a grounded system will have a voltage relative to the grounded conductor and the ground. For a #Ground fault to pass current and trip a overcurrent protection devices or a residual current device, only one ground faults - between the ungrounded conductor and the ground - will be required. This means in this system that a person could touch the busbar of either the grounded conductor or ground and be safe as long as there is no fault.

Grounded systems are better at readily identifying single ground faults and making users or technicians aware that there is an issue. They also avoid the double-fault scenarios that can be an issue for ungrounded systems.

Conductor Voltage relative to other conductors
Ungrounded conductor Will have full circuit voltage relative to the grounded conductor, ground, and any grounded equipment.
Grounded conductor Will have the full circuit voltage relative to the ungrounded conductor. Will have no voltage relative to ground or any grounded equipment.
Grounding conductors Will have full circuit voltage relative to the ungrounded conductor. Will have no voltage relative to the grounded conductor.

Notes/references

  1. Cahiers Techniques 173: Earthing Systems Worldwide and Evolutions https://www.mikeholt.com/documents/mojofiles/electricalearthingworldwide.pdf
  2. SMA Grounding in Off-grid Systems: Design of TN and TT Off-Grid https://files.sma.de/downloads/SI-OffGrid-Grounding-TI-en-11.pdf