Difference between revisions of "Translations:Charge controller/76/en"

From Open Source Solar Project
Jump to navigation Jump to search
(Importing a new version from external source)
 
(Importing a new version from external source)
 
Line 1: Line 1:
 
#Budget - A MPPT charge controller may cost 1.5-2 times as much as a PWM charge controller, although there can be savings if it enables the use of a 60-cell or 72-cell module over a 36-cell module which typically cost more as they are produced in smaller batches.
 
#Budget - A MPPT charge controller may cost 1.5-2 times as much as a PWM charge controller, although there can be savings if it enables the use of a 60-cell or 72-cell module over a 36-cell module which typically cost more as they are produced in smaller batches.
#Flexibility - PWM charge controllers can only be used with 36-cell or 72-cell modules in specific [[Special:MyLanguage/Series and parallel|series and parallel]] configurations where the operating voltage of the [[Special:MyLanguage/PV source|PV source]] matches the charging voltage of the [[Special:MyLanguage/Energy storage|energy storage system]]. This limits the PV source to a relatively low operating voltage. Whereas MPPT charge controllers can be used with any series and parallel configurations as long as the maximum voltage and current do not exceed the rating of the charge controller. This flexibility is an very important advantage when designing larger systems.
+
#Flexibility - PWM charge controllers can only be used with 36-cell or 72-cell modules in specific [[Special:MyLanguage/Series and parallel connections|series and parallel]] configurations where the operating voltage of the [[Special:MyLanguage/PV source|PV source]] matches the charging voltage of the [[Special:MyLanguage/Energy storage|energy storage system]]. This limits the PV source to a relatively low operating voltage. Whereas MPPT charge controllers can be used with any series and parallel configurations as long as the maximum voltage and current do not exceed the rating of the charge controller. This flexibility is an very important advantage when designing larger systems.
 
#Component availability - Certain charge controller types or module types may not be readily available in all locations.
 
#Component availability - Certain charge controller types or module types may not be readily available in all locations.
 
#Performance - MPPT charge controller will perform better in cooler climates as they can take advantage of the higher voltage that a PV module is capable of producing.
 
#Performance - MPPT charge controller will perform better in cooler climates as they can take advantage of the higher voltage that a PV module is capable of producing.
 
#System size - With a smaller system the advantages of a PWM charge controller prevail, but as system size increases the benefits of a MPPT charge controller increase. At a certain system size the additional wiring required with a PWM charge controller due to parallel connections and low voltage becomes a significant pain and expense.
 
#System size - With a smaller system the advantages of a PWM charge controller prevail, but as system size increases the benefits of a MPPT charge controller increase. At a certain system size the additional wiring required with a PWM charge controller due to parallel connections and low voltage becomes a significant pain and expense.

Latest revision as of 17:34, 11 March 2021

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (Charge controller)
#Budget - A MPPT charge controller may cost 1.5-2 times as much as a PWM charge controller, although there can be savings if it enables the use of a 60-cell or 72-cell module over a 36-cell module which typically cost more as they are produced in smaller batches.
#Flexibility - PWM charge controllers can only be used with 36-cell or 72-cell modules in specific [[Special:MyLanguage/Series and parallel connections|series and parallel]] configurations where the operating voltage of the [[Special:MyLanguage/PV source|PV source]] matches the charging voltage of the [[Special:MyLanguage/Energy storage|energy storage system]]. This limits the PV source to a relatively low operating voltage. Whereas MPPT charge controllers can be used with any series and parallel configurations as long as the maximum voltage and current do not exceed the rating of the charge controller. This flexibility is an very important advantage when designing larger systems.
#Component availability - Certain charge controller types or module types may not be readily available in all locations.
#Performance - MPPT charge controller will perform better in cooler climates as they can take advantage of the higher voltage that a PV module is capable of producing.
#System size - With a smaller system the advantages of a PWM charge controller prevail, but as system size increases the benefits of a MPPT charge controller increase. At a certain system size the additional wiring required with a PWM charge controller due to parallel connections and low voltage becomes a significant pain and expense.
Translation#Budget - A MPPT charge controller may cost 1.5-2 times as much as a PWM charge controller, although there can be savings if it enables the use of a 60-cell or 72-cell module over a 36-cell module which typically cost more as they are produced in smaller batches.
#Flexibility - PWM charge controllers can only be used with 36-cell or 72-cell modules in specific [[Special:MyLanguage/Series and parallel connections|series and parallel]] configurations where the operating voltage of the [[Special:MyLanguage/PV source|PV source]] matches the charging voltage of the [[Special:MyLanguage/Energy storage|energy storage system]]. This limits the PV source to a relatively low operating voltage. Whereas MPPT charge controllers can be used with any series and parallel configurations as long as the maximum voltage and current do not exceed the rating of the charge controller. This flexibility is an very important advantage when designing larger systems.
#Component availability - Certain charge controller types or module types may not be readily available in all locations.
#Performance - MPPT charge controller will perform better in cooler climates as they can take advantage of the higher voltage that a PV module is capable of producing.
#System size - With a smaller system the advantages of a PWM charge controller prevail, but as system size increases the benefits of a MPPT charge controller increase. At a certain system size the additional wiring required with a PWM charge controller due to parallel connections and low voltage becomes a significant pain and expense.
  1. Budget - A MPPT charge controller may cost 1.5-2 times as much as a PWM charge controller, although there can be savings if it enables the use of a 60-cell or 72-cell module over a 36-cell module which typically cost more as they are produced in smaller batches.
  2. Flexibility - PWM charge controllers can only be used with 36-cell or 72-cell modules in specific series and parallel configurations where the operating voltage of the PV source matches the charging voltage of the energy storage system. This limits the PV source to a relatively low operating voltage. Whereas MPPT charge controllers can be used with any series and parallel configurations as long as the maximum voltage and current do not exceed the rating of the charge controller. This flexibility is an very important advantage when designing larger systems.
  3. Component availability - Certain charge controller types or module types may not be readily available in all locations.
  4. Performance - MPPT charge controller will perform better in cooler climates as they can take advantage of the higher voltage that a PV module is capable of producing.
  5. System size - With a smaller system the advantages of a PWM charge controller prevail, but as system size increases the benefits of a MPPT charge controller increase. At a certain system size the additional wiring required with a PWM charge controller due to parallel connections and low voltage becomes a significant pain and expense.