Difference between revisions of "Electricity and energy/es"

From Open Source Solar Project
Jump to navigation Jump to search
(Created page with "File:Electronswire.png|thumb|right|Una sección transversal de un alambre de cobre con sus átomos agrandados. Los electrones fluyen de un átomo a otro en su camino desde...")
(Created page with "La electricidad es una fuerza creada a partir del componente básico de toda la materia: los átomos. Todos los átomos están compuestos por tres componentes principales: neu...")
Line 18: Line 18:
 
[[File:Electronswire.png|thumb|right|Una sección transversal de un alambre de cobre con sus átomos agrandados. Los electrones fluyen de un átomo a otro en su camino desde áreas de alta concentración a áreas de baja concentración.]]
 
[[File:Electronswire.png|thumb|right|Una sección transversal de un alambre de cobre con sus átomos agrandados. Los electrones fluyen de un átomo a otro en su camino desde áreas de alta concentración a áreas de baja concentración.]]
  
Electricity is a force created from the basic building block of all matter - atoms. All atoms are composed of three core components - neutrons (no charge), protons (positive charge) and electrons (negative charge). Out of these three, the only one that is able to freely move from atom to atom is the negatively charged electron. Electrons can build up in higher concentrations in some locations and create a negative charge. Or there can be a lack of electrons, which create a positive charge. Electrons desire to flow from areas of high electron concentration to areas of low electron concentration. Not all atoms or materials have free electrons that can move around easily - most do not like wood, plastic rocks - we call these ''insulators''. Metals and copper are good ''conductors'' as they have abundant free electrons.
+
La electricidad es una fuerza creada a partir del componente básico de toda la materia: los átomos. Todos los átomos están compuestos por tres componentes principales: neutrones (sin carga), protones (carga positiva) y electrones (carga negativa). De estos tres, el único que puede moverse libremente de un átomo a otro es el electrón (carga negativa). Los electrones pueden acumularse en concentraciones más altas en algunos lugares y crear una carga negativa general. O puede haber una falta de electrones, lo que crea una carga positiva general. Los electrones desean fluir desde áreas de alta concentración de electrones a áreas de baja concentración de electrones. No todos los átomos o materiales tienen electrones libres que puedan moverse fácilmente como la madera, el plastico o las piedras. A estos los llamamos ''aislantes''. Los metales y el cobre son buenos ''conductores'', ya que tienen abundantes electrones libres.
  
 
The small static electric shocks that we receive from our cloths are the result of a difference in electrons from your body to that item - this difference is ''voltage''. As the electrons pass from your body to that item of clothing a ''current'' is created.  
 
The small static electric shocks that we receive from our cloths are the result of a difference in electrons from your body to that item - this difference is ''voltage''. As the electrons pass from your body to that item of clothing a ''current'' is created.  

Revision as of 11:36, 8 February 2021

Other languages:
English • ‎español

Electricidad parece que está por todas partes: fluye en nuestros cuerpos para alimentar nuestros corazones, los rayos constantemente caen sobre la tierra a aproximadamente 100 descargas por segundo [1] y la mayoría de las fabricas y oficinas del mundo funcionan con electricidad. Pero solo parece que está en todas partes, aún hay casi mil millones de personas sin acceso a la electricidad en todo el mundo, mayormente en comunidades rurales. El problema principal siempre ha sido que la electricidad siempre se producía en unos pocos lugares seleccionados y luego se distribuía desde allí en una red eléctrica a hogares y negocios, cuya expansión puede ser muy costosa. A pesar de que ni siquiera llega a todos en el planeta, la red eléctrica provoca importantes daños ambientales que afectan a todos.

Sistemas FV pueden ayudar a solucionar ambos problemas: aceso a la energía y la contaminación que produce las fuentes de energía non-renovables como carbón. Sistemas FV conectados a la red se puede utilizar para ayudar a reducir los impactos ambientales del uso de electricidad y sistemas FV autónomos puede ayudar a proporcionar energía a áreas donde la red no llega, ya que pueden producir, almacenar y proporcionar energía en forma de electricidad incluso en los lugares más remotos.

Derecha - La mayoría de las redes eléctricas dependen de formas centralizadas de generación (carbón, gas natural, nuclear, hidroeléctrica a gran escala para producir electricidad que se distribuye a los hogares a través de la transmisión y líneas de distribución.
Izquierda - Los sistemas fotovoltaicos autónomos (fuera de la red) son independientes de este sistema.

Un sistema FV debe diseñarse para que coincida con las características del sistema eléctrico en la zona y las necesidades energéticas del usuario final. No solo los diseñadores e instaladores de sistemas autónomos deben comprender a fondo la electricidad y la energía, sino también los usuarios para asegurarse de que no dañen su sistema al usarlo más allá de sus capacidades. Los principales conceptos que es necesario comprender son:

  • La corriente
  • El voltaje
  • La resistencia

Estos son los componentes básicos de incluso los sistemas eléctricos más complejos.

¿Que es la electricidad?

Una sección transversal de un alambre de cobre con sus átomos agrandados. Los electrones fluyen de un átomo a otro en su camino desde áreas de alta concentración a áreas de baja concentración.

La electricidad es una fuerza creada a partir del componente básico de toda la materia: los átomos. Todos los átomos están compuestos por tres componentes principales: neutrones (sin carga), protones (carga positiva) y electrones (carga negativa). De estos tres, el único que puede moverse libremente de un átomo a otro es el electrón (carga negativa). Los electrones pueden acumularse en concentraciones más altas en algunos lugares y crear una carga negativa general. O puede haber una falta de electrones, lo que crea una carga positiva general. Los electrones desean fluir desde áreas de alta concentración de electrones a áreas de baja concentración de electrones. No todos los átomos o materiales tienen electrones libres que puedan moverse fácilmente como la madera, el plastico o las piedras. A estos los llamamos aislantes. Los metales y el cobre son buenos conductores, ya que tienen abundantes electrones libres.

The small static electric shocks that we receive from our cloths are the result of a difference in electrons from your body to that item - this difference is voltage. As the electrons pass from your body to that item of clothing a current is created.

Circuits

Static electricity and lightning are not useful to humanity as they are not in controlled systems. Electricity needs to be contained within an electrical system comprised of circuits for it to be used properly and safely. A basic electrical circuit is a closed loop built out of the following: 1. An energy source that has or can create an imbalance of electrons between to two points, which is voltage. 2. Conductive material, like wires, that allows electrons to flow from areas of high concentration to areas of low concentration. This flow is current. 3. A load or some means of constraining electron flow. Without a load or some kind of way of restraining electron flow, the electron difference created by the energy source will quickly reach zero.

Circuits can be in various states:

  • Closed: connected, on, functioning. A properly connected circuit with a load which has current flowing.
  • Open: disconnected, off, disabled. A circuit that is not connected or switched off which has no current flowing.
  • Short: fault, improper low resistance connection. A circuit that has been improperly built without sufficient resistance - like a load - to constrain the flow of current. A circuit in a short circuit state will allow as much current to flow as possible until the power source is exhausted. If a load is connected in parallel with a short-circuit, like in the diagram, the load may stop functioning due to insufficient voltage/current.

Characteristics of electricity

Electricity is almost always invisible, but flowing water enables us to create good comparisons and make the concept understandable. A circuit with a battery - like in the previous graphic - operates at a certain voltage and current, similarly a basic hydraulic system operates with a certain pressure and volume.

  • The voltage in the electrical circuit is similar to the pressure in the hydraulic system.
  • The current in the electrical circuit is similar to the flow in the hydraulic system.
  • The wires in the electrical circuit and the load create resistance. The pipes and sprinkler in the final graphic also create friction.

Voltage

Voltage is the force that moves electrons in a circuit and is measured in volts (V). It can be thought of as electrical pressure and in a circuit with a battery the voltage is determined by the amount of energy stored in the battery. Voltage is similar to the pressure created in the hydraulic system. It depends upon the amount of water in the water that it holds.

Current

Current is the flow of electrons in a circuit and is measured in amperes or amps (A). Current is similar to the volume of water flowing in the hydraulic system. It depends upon the amount of water permitted to flow by the valve and upon the pressure in the system.

Resistance

Resistance (R) is a resistance to current that is present in all materials and all electrical systems and it is measured in Ohms (Ω). If the wires in an electrical circuit are too small for the amount of current that they need to carry, it will create friction and heat. Voltage is lost as a result. Similarly, the pipes through which the water flows in the hydraulic system can create friction if there is too much pressure or volume trying to pass through them.

Power: watts

Power (P) is a measurement of work done in a unit of time. How much electricity is being consumed, which is power, in an electric circuit depends upon both the voltage and the current of the circuit. In electrical systems power is measured in watts (W) A watt is a measure of the energy produced or consumed in one second. Power is also commonly expressed in kW (1 kW = 1000 W) and MW (1 MW = 1,000,000 W) in larger systems. Similarly, if water flowing from the hydraulic system is used to perform work, like spinning a wheel, the power that is used will depend upon both the volume and the pressure of the water supplied. An inefficient load in an electrical system or hydraulic system will consume more power than an efficient one.

The formula for calculating power in an electrical system is:

Power (P) = voltage (V) × current (I)

The same amount of power can be generated with by using varying amounts of voltage and current. For example:

  • 1000 watts = 10 volts × 100 amps
  • 1000 watts = 100 volts × 10 amps
All appliances should have a label with their rated power consumption on them. Often times it is in volts and amps rather than watts. You can easily calculate watts from these two values.

The equation can also be rearranged to solve for missing variables. If you have any two of the three variables (P, V, I), then you can solve for the third. For example:

Example 1: A cell phone is plugged into to charge. It is connected to a 12V battery and there is 1A of current flowing. How much power is being consumed?

  • P = 12 V × .5 A
W = 6 W

Example 2: A television is using 48 W of power. The battery that it is connected to has a voltage of 12 V. How much current (I) is flowing?

  • 48 W = 12 V x I
I = 48 W ÷ 12 V
I = 4 A

Example 3: A small water pump is being used to fill a tank. The pump is a 440 W pump and there are 2 A of current flowing. What is the voltage of the system?

  • 440W = V × 2 A
V = 440 W ÷ 2 A
V = 220 V

Energy: watt-hours

A typical electricity meter for a grid connection. Most meters measure energy in kWh. If you are connected to the grid, you will be charged a price per kWh consumed.

Power is a quick look at how much energy is being consumed or produced. For an electrical system this is an important value, but it is equally important to understand power consumption over time. Energy consumption over time is measured in watt-hours (Wh) or kilo-watt-hours (kWh). A watt-hour is the consumption of 1W of power for 1 hour. The formula for calculating Watt-hours is simple:

Watt-hours (Wh) = power (P) × time in hours (t)
  • Time in hours can be a fraction or percentage if necessary.

Example 1: A radio is plugged in and plays music for 3 hours. The radio says on the back that it consumes 7 W of power.

  • Wh = 7 W × 3 hours
Wh = 21 Wh

Example 2: The motor on a fan says that it requires 60 W. The fan is left on during the night for 12 hours.

  • Wh = 60 W × 12 hours
Wh = 720 Wh

Notes

  1. Frecuencia de relámpagos de la NOAA. https://sos.noaa.gov/datasets/lightning-flash-rate/