Difference between revisions of "Translations:What is an off-grid PV system?/1/en"
(Importing a new version from external source) |
(Importing a new version from external source) |
||
Line 1: | Line 1: | ||
− | The term off-grid encompasses many different system designs as it simply signifies an electrical system that is not connected to the electric grid. Off-grid power systems are installed to provide [[Electricity and energy|electricity]] in areas where the normal grid does not exist. The most common off-grid power system is a photovoltaic (PV) system with batteries. [[PV module|PV modules]] are used to generate electricity when the sun is shining, but the sun is a variable resource - it sets every day and is frequently hidden by clouds - therefore an off-grid PV system uses batteries to store some of the [[Electricity and energy|energy]] generated by the PV source for later use. This is similar to how rainwater collection systems function. It can be helpful to make this comparison between the two systems as a rainwater collection system uses simple components that are common in most parts of the world that serve similar functions to the more complicated components in an off-grid PV system. In the simplest sense both of the systems capture a variable natural resource - rainwater and sun - when it is abundant and store it for later use when it is scarce. To do so both of them have six basic components: a form of collection, a means of distribution, a way to regulate in-flows, storage, a way to regulate out-flows and a means of consumption. | + | The term off-grid encompasses many different system designs as it simply signifies an electrical system that is not connected to the electric grid. Off-grid power systems are installed to provide [[Special:MyLanguage/Electricity and energy|electricity]] in areas where the normal grid does not exist. The most common off-grid power system is a photovoltaic (PV) system with batteries. [[Special:MyLanguage/PV module|PV modules]] are used to generate electricity when the sun is shining, but the sun is a variable resource - it sets every day and is frequently hidden by clouds - therefore an off-grid PV system uses batteries to store some of the [[Special:MyLanguage/Electricity and energy|energy]] generated by the PV source for later use. This is similar to how rainwater collection systems function. It can be helpful to make this comparison between the two systems as a rainwater collection system uses simple components that are common in most parts of the world that serve similar functions to the more complicated components in an off-grid PV system. In the simplest sense both of the systems capture a variable natural resource - rainwater and sun - when it is abundant and store it for later use when it is scarce. To do so both of them have six basic components: a form of collection, a means of distribution, a way to regulate in-flows, storage, a way to regulate out-flows and a means of consumption. |
Latest revision as of 13:24, 5 February 2021
The term off-grid encompasses many different system designs as it simply signifies an electrical system that is not connected to the electric grid. Off-grid power systems are installed to provide electricity in areas where the normal grid does not exist. The most common off-grid power system is a photovoltaic (PV) system with batteries. PV modules are used to generate electricity when the sun is shining, but the sun is a variable resource - it sets every day and is frequently hidden by clouds - therefore an off-grid PV system uses batteries to store some of the energy generated by the PV source for later use. This is similar to how rainwater collection systems function. It can be helpful to make this comparison between the two systems as a rainwater collection system uses simple components that are common in most parts of the world that serve similar functions to the more complicated components in an off-grid PV system. In the simplest sense both of the systems capture a variable natural resource - rainwater and sun - when it is abundant and store it for later use when it is scarce. To do so both of them have six basic components: a form of collection, a means of distribution, a way to regulate in-flows, storage, a way to regulate out-flows and a means of consumption.