Difference between revisions of "Simplified PWM charge controller sizing and selection/es"

From Open Source Solar Project
Jump to navigation Jump to search
Line 34: Line 34:
  
 
{| class="wikitable" border=1 style="width: 80%;"
 
{| class="wikitable" border=1 style="width: 80%;"
! style="width: 20%"|Cantidad de módulos en serie
+
! style="width: 20%"|Cantidad de módulos FV en serie
 
! style="text-align:left;"| =
 
! style="text-align:left;"| =
 
|}
 
|}

Revision as of 16:58, 6 April 2021

Other languages:
English • ‎español

Un controlador de carga PWM está clasificado para funcionar a un tensión CC del sistema y una corriente máxima en especifico. Los módulos FV diseñados para funcionar a esta tensión de CC del sistema deben conectarse en circuitos de fuente FV en paralelo para lograr el la capacidad mínima de la fuente FV y el controlador de carga, por lo tanto, debe dimensionarse para manejar esta cantidad de corriente. Si se excede la clasificación actual de un controlador de carga PWM, puede dañarse o destruirse.

Paso 1: Determine la potencia nominal del módulo fotovoltaico y la configuración de la serie

La tensión CC dle sistema limita las opciones de módulos y configuraciones que son posibles con un controlador de carga PWM. A continuación se muestra una tabla con la cantidad de módulos que se pueden conectar en serie para cada circuito de fuente FV dependiendo de la tensión del sistema de CC.

Tensión de CC del sistema 36 celdas 60 celdas 72 celdas
12 V 1
24 V 2 1
48 V 4 2
Clasificación de potencia del módulo FV =
Cantidad de módulos FV en serie =

Paso 2: Determine la configuración propuesta de módulos FV

Este cálculo dará un número "mínimo" de módulos FV; el resultado siempre debe redondearse hacia arriba. Se pueden explorar diferentes tamaños y configuraciones de módulos para encontrar el diseño óptimo.

Cantidad de módulos FV = La capacidad mínima de la fuente FV ajustada por temperatura ÷ La clasificación de potencia del módulo FV (Paso 1)

The final number of PV modules should always be larger than this value - the result should always be rounded up.

Number of PV source circuits = Minimum number of PV modules ÷ Number of modules in series (Step 1)

Step 3: Total PV source current

This calculation will give a minimum current rating to use as a basis for selecting the charge controller. The Isc rating of the PV module can be found on its specifications sheet. This value is multiplied by a required 1.25 safety factor to make sure the charge controller can handle periods of excessive current due to high irradiance.

Total PV source current = Final number of PV source circuits (Step 2) × Isc rating of chosen module (Step 1) × 1.25

Step 4: Select a charge controller

A single charge controller is the simplest and cheapest option, but for larger systems multiple charge controllers often are used in parallel. The final chosen charge controller should:

  1. Function at the DC system voltage.
  2. The charge controller(s) should have a total current rating that is larger than the minimum current rating (Step 2). Common charge controller current ratings: 4.5 A, 5 A, 6 A, 10 A, 12 A, 15 A, 20 A, 25 A, 30 A, 35 A, 40 A, 45 A, 50 A, 55 A, 60 A.
Final charge controller current rating =

The result of the following equation should always be rounded up.

Number of charge controllers = Total PV source current (Step 3) ÷ Final charge controller current rating

Step 5: Determine final PV source power rating

The total power rating of the PV source can be calculated by multiplying the power rating of the chosen PV module by the final number of PV modules (Step 3).

PV source power rating = PV module power rating (Step 1) × Final number of PV modules (Step 3)

Notes/references