Difference between revisions of "Energy storage sizing and selection/es"
(Created page with "====Paso 2: Determinar el valor para el parámetro de días de autonomía====") |
(Created page with "El parámetro de días de autonomía determina la cantidad de días que el sistema podrá satisfacer las necesidades energéticas sin carga de ningún tipo. Un día de autonom...") |
||
Line 15: | Line 15: | ||
====Paso 2: Determinar el valor para el parámetro de días de autonomía==== | ====Paso 2: Determinar el valor para el parámetro de días de autonomía==== | ||
− | + | El parámetro de días de autonomía determina la cantidad de días que el sistema podrá satisfacer las necesidades energéticas sin carga de ningún tipo. Un día de autonomía proporciona suficiente capacidad de almacenamiento de energía para proporcionar energía para las cargas del [[Special:MyLanguage/Simplified load evaluation|análisis de cargas simplificada]] durante un día sin ninguna carga adicional. Cada día de autonomía adicional agrega un día adicional de capacidad de almacenamiento de energía. Por ejemplo: | |
*205 Ah lead acid battery x 1 day of autonomy = 205 Ah | *205 Ah lead acid battery x 1 day of autonomy = 205 Ah |
Revision as of 14:00, 1 April 2021
El sistema de almacenamiento de energía tiene un tamaño basado en los requisitos de energía diarios promedio para el sistema y varios parámetros clave. Los primeros 5 pasos de este proceso generan un tamaño Ah sugerido para el sistema de almacenamiento de energía, pero luego es necesario determinar una configuración en serie y en paralelo en función de las tensiones y tamaños de batería disponibles.
Contents
- 1 Paso 1: Determinar el valor para el parámetro de profundidad de descarga
- 2 Paso 2: Determinar el valor para el parámetro de días de autonomía
- 3 Step 3: Determine battery temperature correction factor
- 4 Step 4: Calculate total Ah required
- 5 Step 5: Calculate number of batteries in series
- 6 Step 6: Calculate number of parallel battery circuits
- 7 Step 7: Calculate final Ah capacity
- 8 Notes/references
Paso 1: Determinar el valor para el parámetro de profundidad de descarga
El parámetro de profundidad de descarga determina el porcentaje del sistema de almacenamiento de energía que se considera utilizable para el diseño del sistema . El valor de profundidad de descarga elegido afecta la capacidad, ciclos de vida y el costo del sistema de almacenamiento de energía. Las baterías de plomo ácido no tolera las descargas profundas regulares, por lo que se suelen utilizar valores entre .4-.5 (40-50%). A menudo se cita un valor de .5 como el que proporciona el mayor número de ciclos en relación con el costo, pero hay consideraciones adicionales que deben tenerse en cuenta para determinar la profundidad del valor de descarga:
- Un sistema que se prevé que se utilizará mucho puede justificar un valor más conservador.
- Un sistema que se encuentra en una ubicación de difícil acceso puede garantizar un valor más conservador.
Paso 2: Determinar el valor para el parámetro de días de autonomía
El parámetro de días de autonomía determina la cantidad de días que el sistema podrá satisfacer las necesidades energéticas sin carga de ningún tipo. Un día de autonomía proporciona suficiente capacidad de almacenamiento de energía para proporcionar energía para las cargas del análisis de cargas simplificada durante un día sin ninguna carga adicional. Cada día de autonomía adicional agrega un día adicional de capacidad de almacenamiento de energía. Por ejemplo:
- 205 Ah lead acid battery x 1 day of autonomy = 205 Ah
- 205 Ah lead acid battery x 2 days of autonomy = 410 Ah
- 205 Ah lead acid battery x 3 days of autonomy = 615 Ah
The value that is chosen for this parameter depends largely upon the variability of the solar resource, the intended use of the system, and the budget. It is almost always preferable to have additional storage, therefore budget often becomes the primary constraint. There are various considerations that go into determining the value that is appropriate for a particular design:
- If a system is intended for a location where the weather or solar resource is highly variable, the value for days of autonomy should be increased. It is possible using Weather and solar resource data sources to examine how frequently periods of bad weather occur and their duration for any given location.
- If a system is intended to provide power at a location where the users will adjust their energy consumption according to the weather or that is used infrequently, fewer days of autonomy can be built into the system. A value of 2 days of autonomy may be appropriate in these cases as long as there is a sufficiently sized PV source or an additional form of generation.
- If a system is intended to provide power at a location that must operate continually, like at a health clinic, it is recommended that a significant number of days of autonomy are built into the system or that an additional form of generation, like a generator, is added to the system. An energy storage system with 5-7 days of autonomy for a health clinic will often be quite substantial in size, difficult to charge properly, and costly. Therefore, a backup generator should be considered in this case.
- The days of autonomy value that is chosen will be used to size the energy storage system to meet energy demand when the battery bank is new, but the storage capacity of the energy storage system will gradually decline over time. Therefore, oversizing a battery bank to take this into account is a good idea.
Step 3: Determine battery temperature correction factor
The temperature of lead acid batteries has a significant effect upon performance. When lead acid batteries reach a temperature below 25°C, their usable capacity begins to decline. This can lead to batteries being deeply discharged and damaged, therefore the size of the energy storage system should be adjusted to ensure that there is adequate energy available at the minimum expected indoor temperature for the location.
Correction factors for various battery types:[1]
Temperature | FLA | AGM | Gel |
---|---|---|---|
25°C | 1.00 | 1.00 | 1.00 |
20°C | 1.06 | 1.03 | 1.04 |
15°C | 1.13 | 1.05 | 1.07 |
10°C | 1.19 | 1.08 | 1.11 |
5°C | 1.29 | 1.14 | 1.18 |
0°C | 1.39 | 1.20 | 1.25 |
-5°C | 1.55 | 1.28 | 1.34 |
-10°C | 1.70 | 1.35 | 1.42 |
Step 4: Calculate total Ah required
Total Ah required | = Design daily Watt-hours required ÷ DC system voltage × Battery temperature correction factor (Step 3) × Days of autonomy parameter (Step 2) ÷ Depth of discharge parameter (Step 1) |
---|
Step 5: Calculate number of batteries in series
Lead acid batteries are commonly available in 2V, 4V, 6V, 12V designs that can be wired in series to achieve a 12V, 24V, or 48V system voltage. See Battery wiring for more information on how to properly configure a battery bank. With small systems 12V batteries are the standard, but as system size increases lower battery voltages lead to more storage with fewer parallel strings, which is a better design. Deep cycle batteries with voltages below 12V can be difficult to find in some locations.
Batteries in series | = DC system voltage ÷ Chosen battery voltage |
---|
Step 6: Calculate number of parallel battery circuits
Lead acid batteries are available in a variety of Ah ratings. They can be wired in parallel to achieve the desired total Ah of storage for the system. See Battery wiring for more information on how to properly configure a battery bank. The result of this calculation should be rounded up, meaning that if the number of parallel strings is more than 1, then 2 parallel strings are required. The other option would be to use a battery with a higher Ah rating.
Number of parallel battery circuits | = Total Ah required (Step 4) ÷ Chosen battery Ah rating |
---|
Step 7: Calculate final Ah capacity
The final Ah capacity of the battery bank is the chosen battery Ah rating multiplied by the number of parallel strings. This value is important for other calculations in the design process.
Final Ah capacity | = Number of parallel battery circuits (Step 6) × Chosen battery Ah rating |
---|
Notes/references
- ↑ Trojan Battery Company - Battery Sizing Guidelines https://www.trojanbattery.com/pdf/TRJN0168_BattSizeGuideFL.pdf