Difference between revisions of "Translations:Series and parallel connections/31/en"
(Importing a new version from external source) |
m (FuzzyBot moved page Translations:Series and parallel/31/en to Translations:Series and parallel connections/31/en without leaving a redirect: Part of translatable page "Series and parallel") |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The type of connection is ideal for a circuit depends upon the components that will be used with the circuit. All components used in an electrical system have specific maximum current and maximum voltage ratings, but PV specific components like [[Special:MyLanguage/Charge controller|charge controllers]] and [[Special:MyLanguage/Inverter|inverters]] also have minimum voltage requirements to function properly. The other important factor in determining the connection type is that increases in current require larger conductors to avoid electrical fires, yet voltage does not suffer from the same challenges. Increasing the voltage of a circuit can be used to increase the amount of power that a circuit is capable of carrying without the necessity of increasing the size of the conductor. This means that a higher voltage, as long as it is within the maximum voltage limits of all of the components in the system, is typically preferrable as it reduces the size of conductors needed for a PV system. Using a higher voltage is an important strategy to keep [[Special:MyLanguage/Voltage drop|voltage drop]] to a minimum | + | The type of connection is ideal for a circuit depends upon the components that will be used with the circuit. All components used in an electrical system have specific maximum current and maximum voltage ratings, but PV specific components like [[Special:MyLanguage/Charge controller|charge controllers]] and [[Special:MyLanguage/Inverter|inverters]] also have minimum voltage requirements to function properly. The other important factor in determining the connection type is that increases in current require larger conductors to avoid electrical fires, yet voltage does not suffer from the same challenges. Increasing the voltage of a circuit can be used to increase the amount of power that a circuit is capable of carrying without the necessity of increasing the size of the conductor. This means that a higher voltage, as long as it is within the maximum voltage limits of all of the components in the system, is typically preferrable as it reduces the size of conductors needed for a PV system. Using a higher voltage is an important strategy to keep [[Special:MyLanguage/Voltage drop|voltage drop]] and system cost to a minimum. |
Latest revision as of 12:18, 1 March 2021
The type of connection is ideal for a circuit depends upon the components that will be used with the circuit. All components used in an electrical system have specific maximum current and maximum voltage ratings, but PV specific components like charge controllers and inverters also have minimum voltage requirements to function properly. The other important factor in determining the connection type is that increases in current require larger conductors to avoid electrical fires, yet voltage does not suffer from the same challenges. Increasing the voltage of a circuit can be used to increase the amount of power that a circuit is capable of carrying without the necessity of increasing the size of the conductor. This means that a higher voltage, as long as it is within the maximum voltage limits of all of the components in the system, is typically preferrable as it reduces the size of conductors needed for a PV system. Using a higher voltage is an important strategy to keep voltage drop and system cost to a minimum.