Difference between revisions of "Translations:Ground fault protection device/3/en"

From Open Source Solar Project
Jump to navigation Jump to search
(Importing a new version from external source)
 
(Importing a new version from external source)
 
Line 1: Line 1:
A ground fault protection device (GFPD) uses a low current breaker (.5-1 A) to create a connection between a conductor (wire) and ground on the DC side of a PV system, which creates a grounded conductor. This breaker is ganged (connected) to another breaker through which the positive PV source or output wire passes. In the event of a DC [[Special:MyLanguage/Grounding system#Ground faults|ground fault]], the low current breaker will trip removing the connection between the grounded conductor and the ground but will also [[Special:MyLanguage/Electricity and energy#Circuits|open]] (disconnect) the ungrounded conductor of the PV source circuit. A GFPD will improve safety on all systems with a DC system ground, but they are most vital for systems that will have PV modules mounted on the roof of a structure. Building a pole or ground mounted system will minimize fire risk to people in the event of a ground fault and can be a way to increase the safety of a system. Ground fault protection devices can be a significant additional cost for small systems and may be difficult to find in many locations and that typically limits their usage in many parts of the world.
+
A ground fault protection device (GFPD) uses a low current breaker (.5-1 A) to create a connection between a conductor (wire) and ground on the DC side of a PV system, which creates a grounded conductor. This breaker is ganged (connected) to another breaker through which the ungroudned conductor is connected. In the event of a DC [[Special:MyLanguage/Grounding system#Ground faults|ground fault]], the low current breaker will trip removing the connection between the grounded conductor and the ground but will also [[Special:MyLanguage/Electricity and energy#Circuits|open]] (disconnect) the ungrounded conductor of the PV source circuit. A GFPD will improve safety on all systems with a DC system ground, but they are most vital for systems that will have PV modules mounted on the roof of a structure. Building a pole or ground mounted system will minimize fire risk to people in the event of a ground fault and can be a way to increase the safety of a system. Ground fault protection devices can be a significant additional cost for small systems and may be difficult to find in many locations and that typically limits their usage in many parts of the world.

Latest revision as of 07:12, 15 February 2021

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (Ground fault protection device)
A ground fault protection device (GFPD) uses a low current breaker (.5-1 A) to create a connection between a conductor (wire) and ground on the DC side of a PV system, which creates a grounded conductor. This breaker is ganged (connected) to another breaker through which the ungroudned conductor is connected. In the event of a DC [[Special:MyLanguage/Grounding system#Ground faults|ground fault]], the low current breaker will trip removing the connection between the grounded conductor and the ground but will also [[Special:MyLanguage/Electricity and energy#Circuits|open]] (disconnect) the ungrounded conductor of the PV source circuit. A GFPD will improve safety on all systems with a DC system ground, but they are most vital for systems that will have PV modules mounted on the roof of a structure. Building a pole or ground mounted system will minimize fire risk to people in the event of a ground fault and can be a way to increase the safety of a system. Ground fault protection devices can be a significant additional cost for small systems and may be difficult to find in many locations and that typically limits their usage in many parts of the world.
TranslationA ground fault protection device (GFPD) uses a low current breaker (.5-1 A) to create a connection between a conductor (wire) and ground on the DC side of a PV system, which creates a grounded conductor. This breaker is ganged (connected) to another breaker through which the ungroudned conductor is connected. In the event of a DC [[Special:MyLanguage/Grounding system#Ground faults|ground fault]], the low current breaker will trip removing the connection between the grounded conductor and the ground but will also [[Special:MyLanguage/Electricity and energy#Circuits|open]] (disconnect) the ungrounded conductor of the PV source circuit. A GFPD will improve safety on all systems with a DC system ground, but they are most vital for systems that will have PV modules mounted on the roof of a structure. Building a pole or ground mounted system will minimize fire risk to people in the event of a ground fault and can be a way to increase the safety of a system. Ground fault protection devices can be a significant additional cost for small systems and may be difficult to find in many locations and that typically limits their usage in many parts of the world.

A ground fault protection device (GFPD) uses a low current breaker (.5-1 A) to create a connection between a conductor (wire) and ground on the DC side of a PV system, which creates a grounded conductor. This breaker is ganged (connected) to another breaker through which the ungroudned conductor is connected. In the event of a DC ground fault, the low current breaker will trip removing the connection between the grounded conductor and the ground but will also open (disconnect) the ungrounded conductor of the PV source circuit. A GFPD will improve safety on all systems with a DC system ground, but they are most vital for systems that will have PV modules mounted on the roof of a structure. Building a pole or ground mounted system will minimize fire risk to people in the event of a ground fault and can be a way to increase the safety of a system. Ground fault protection devices can be a significant additional cost for small systems and may be difficult to find in many locations and that typically limits their usage in many parts of the world.