Difference between revisions of "Translations:PV module/19/en"

From Open Source Solar Project
Jump to navigation Jump to search
(Importing a new version from external source)
 
(Importing a new version from external source)
 
Line 1: Line 1:
 
[[File:Temperature - 200921.png|thumb|250px|A diagram of the I-V curve of a PV module as the temperature fluctuates.]]
 
[[File:Temperature - 200921.png|thumb|250px|A diagram of the I-V curve of a PV module as the temperature fluctuates.]]
Cell temperature is the no more complicated than it sounds - the temperature of the PV cells. Cell temperature can be easily measured and has a direct relationship with voltage. Cell temperatures above 25°C ''decrease'' cell voltage and cell temperatures above 25°C ''increase'' cell voltage. If cell temperatures are below 25°C, it is possible for a to exceed the modules rated Open Circuit Voltage (Voc). Losses due to increased cell temperature greatly decrease PV cell production in nearly all PV installations. The formula for calculating losses due to increased cell temperatures is:
+
Cell temperature is the no more complicated than it sounds - the temperature of the PV cells. Cell temperature can be easily measured and has a direct relationship with voltage. Cell temperatures above 25°C ''decrease'' cell voltage and cell temperatures above 25°C ''increase'' cell voltage. If cell temperatures are below 25°C, it is possible for a to exceed the module's rated Open Circuit Voltage (Voc). Losses due to increased cell temperature greatly decrease PV cell production in all PV installations at some moment. The formula for calculating losses due to increased cell temperatures is:

Latest revision as of 20:26, 9 February 2021

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (PV module)
[[File:Temperature - 200921.png|thumb|250px|A diagram of the I-V curve of a PV module as the temperature fluctuates.]]
Cell temperature is the no more complicated than it sounds - the temperature of the PV cells. Cell temperature can be easily measured and has a direct relationship with voltage. Cell temperatures above 25°C ''decrease'' cell voltage and cell temperatures above 25°C ''increase'' cell voltage. If cell temperatures are below 25°C, it is possible for a to exceed the module's rated Open Circuit Voltage (Voc). Losses due to increased cell temperature greatly decrease PV cell production in all PV installations at some moment. The formula for calculating losses due to increased cell temperatures is:
Translation[[File:Temperature - 200921.png|thumb|250px|A diagram of the I-V curve of a PV module as the temperature fluctuates.]]
Cell temperature is the no more complicated than it sounds - the temperature of the PV cells. Cell temperature can be easily measured and has a direct relationship with voltage. Cell temperatures above 25°C ''decrease'' cell voltage and cell temperatures above 25°C ''increase'' cell voltage. If cell temperatures are below 25°C, it is possible for a to exceed the module's rated Open Circuit Voltage (Voc). Losses due to increased cell temperature greatly decrease PV cell production in all PV installations at some moment. The formula for calculating losses due to increased cell temperatures is:
A diagram of the I-V curve of a PV module as the temperature fluctuates.

Cell temperature is the no more complicated than it sounds - the temperature of the PV cells. Cell temperature can be easily measured and has a direct relationship with voltage. Cell temperatures above 25°C decrease cell voltage and cell temperatures above 25°C increase cell voltage. If cell temperatures are below 25°C, it is possible for a to exceed the module's rated Open Circuit Voltage (Voc). Losses due to increased cell temperature greatly decrease PV cell production in all PV installations at some moment. The formula for calculating losses due to increased cell temperatures is: