Difference between revisions of "Basic stand-alone PV system components/es"
(Created page with "===Distribuciíon de energía===") |
|||
Line 24: | Line 24: | ||
Para alimentar cargas de corriente alterna, es necesario tener un [[Special:MyLanguage/Inverter |inverter]] en un sistema autónomo. El banco de baterías proporciona energía con un voltaje y corriente estable al inversor. El inversor puede convertirlo en corriente alterna estable para suministrar cargas de CA. | Para alimentar cargas de corriente alterna, es necesario tener un [[Special:MyLanguage/Inverter |inverter]] en un sistema autónomo. El banco de baterías proporciona energía con un voltaje y corriente estable al inversor. El inversor puede convertirlo en corriente alterna estable para suministrar cargas de CA. | ||
− | === | + | ===Distribuciión de energía=== |
A stand-alone PV system requires some way to safely distribute power to loads such as a [[Special:MyLanguage/Distribution panel|distribution panel]] or [[Special:MyLanguage/busbar|busbars]]. | A stand-alone PV system requires some way to safely distribute power to loads such as a [[Special:MyLanguage/Distribution panel|distribution panel]] or [[Special:MyLanguage/busbar|busbars]]. |
Revision as of 10:17, 8 February 2021
Los sistemas fotovoltaicos autónomos, independientemente de dónde se encuentre en el mundo, comparten los mismos componentes básicos. Este artículo ofrece una descripción general de cada componente con enlaces a información más detallada. Para comprender cómo fluye la energía entre los componentes claves, consulte Flujo de energía entre componentes.
Contents
Fuente FV
Un sistema fotovoltaico (FV) tiene un FV source - uno o más módulos fotovoltaicos - que convierte la energía del sol en corriente eléctrica. Los módulos solares FV utilizan el efecto fotovoltaico para generar corriente eléctrica al exponerse a la luz. Si hay varios módulos en el sistema, normlamente se montan juntos y se conectan en una "matriz".
Almacenamiento de energía
A stand-alone PV system requires some type of energy storage system in order to provide energy at night or during periods of bad weather. The most common form of energy storage for stand-alone PV systems is batteries. There are many different kinds of batteries that each carries advantages and disadvantages. If there are multiple batteries in a system, they are arranged together into what is referred to as a battery bank. The term battery bank may be used for simplicity even if there is only one battery in the system.
Un sistema fotovoltaico autónomo requiere algún tipo de sistema de almacenamiento de energía para proporcionar energía por la noche o durante períodos de mal tiempo. La forma más común de almacenamiento de energía para sistemas fotovoltaicos autónomos son las baterías. Hay muchos tipos diferentes de baterías y cada uno tiene ventajas y desventajas. Si hay varias baterías en un sistema, se conectan juntas en lo que se conoce como un "banco de baterías".
Controlador de carga
Un controlador de carga o inversor-cargador es esencial ya que las baterías tienen requisitos de carga específicos y una carga adecuada es esencial para garantizar que tengan una vida útil prolongada. Un sistema puede tener varios controladores de carga solar en paralelo y pueden incorporar otras fuentes de energía tambien.
Inversor
Para alimentar cargas de corriente alterna, es necesario tener un inverter en un sistema autónomo. El banco de baterías proporciona energía con un voltaje y corriente estable al inversor. El inversor puede convertirlo en corriente alterna estable para suministrar cargas de CA.
Distribuciión de energía
A stand-alone PV system requires some way to safely distribute power to loads such as a distribution panel or busbars.
Mounting system
PV modules must be anchored to some type of mounting system to ensure that their production is maximized with the correct orientation and angle relative to the sun, but also to ensure that they are not damaged by weather.
Conductors
All of the different electrical components of a system are connected together with conductors - wire and cable - that must be appropriate for the voltage, current and conditions to which they will be subjected.
Overcurrent protection/disconnects
All equipment in a PV system - conductors and all components - have a maximum amount of current that they can handle and should therefore be protected from currents that could exceed their maximum rated current. Otherwise, an electrical fire can result. Devices that protect equipment from excess current are called overcurrent protection devices (OCPDs), the most common of which are breakers and fuses. Additionally, in any system it is necessary to isolate all components of a PV system from all potential power sources in order to be able to work safely for maintenance or troubleshooting. Both of these functions can be often be performed by an overcurrent protection device, but a seperate means of disconnection may be necessary for various components.
Grounding system
A properly built grounding system ensures safety for users and protections the system equipment against damage from lightning. Small PV systems often do not incorporate a grounding system due to cost, but the benefit of proper grounding increases as system size and cost increases.
Physical conductor protection
If a conductor could potentially be damaged by the conditions in which it is installed, weather, rodents, building occupants or any other source, it is necessary to provide physical wire protection
Loads
The purpose of an off-grid PV system is to be able to provide power for loads, which covers anything that consumes energy like appliances and lighting. There are important considerations that go into choosing lighting and appliances for use with an off-grid system.