Difference between revisions of "Detailed DC system design"
Line 1: | Line 1: | ||
[[Category:Design examples]] | [[Category:Design examples]] | ||
+ | Design will be completed in January 2021 | ||
− | + | ==[[Physical evaluation]]== | |
'''Location:''' Pampachiri, Apurimac, Peru<br /> | '''Location:''' Pampachiri, Apurimac, Peru<br /> | ||
Line 13: | Line 14: | ||
</gallery> | </gallery> | ||
− | == | + | ==[[Load evaluation]]== |
====Step 1: Fill out DC load chart==== | ====Step 1: Fill out DC load chart==== | ||
{| class="wikitable" style="text-align: center;" | {| class="wikitable" style="text-align: center;" | ||
Line 105: | Line 106: | ||
|} | |} | ||
− | ==Total average daily energy demand== | + | ====Total average daily energy demand==== |
The total energy demand for the system is the added Average daily DC-watt hours and Average daily AC watt-hours for each time period. | The total energy demand for the system is the added Average daily DC-watt hours and Average daily AC watt-hours for each time period. | ||
Line 124: | Line 125: | ||
|} | |} | ||
− | ==Weather and solar resource evaluation== | + | ==[[Weather and solar resource evaluation]]== |
'''Maximum ambient temperature =''' 23°C<br /> | '''Maximum ambient temperature =''' 23°C<br /> | ||
'''Minimum ambient temperature =''' 2°C<br /> | '''Minimum ambient temperature =''' 2°C<br /> | ||
Line 136: | Line 137: | ||
PVGIStempDC2.png|Retrieving PVGIS weather data. | PVGIStempDC2.png|Retrieving PVGIS weather data. | ||
</gallery> | </gallery> | ||
+ | |||
+ | ==[[Load and solar resource comparison]]== | ||
====Step 1: Determine monthly ratio of energy demand to solar resource==== | ====Step 1: Determine monthly ratio of energy demand to solar resource==== | ||
Line 228: | Line 231: | ||
|} | |} | ||
− | ==Design parameters== | + | ==[[:Category:Design parameters|Design parameters]]== |
− | '''System voltage parameter =''' 12 V | + | '''[[System voltage parameter]] =''' 12 V |
*The system, based upon the load evaluation, will be relatively small. A 12 V system makes the most sense. | *The system, based upon the load evaluation, will be relatively small. A 12 V system makes the most sense. | ||
− | '''Irradiance safety parameter =''' 1.25 | + | '''[[Irradiance safety parameter]] =''' 1.25 |
*The irradiance safety parameter is always the same. | *The irradiance safety parameter is always the same. | ||
− | '''Continuous duty safety parameter =''' 1.25 | + | '''[[Continuous duty safety parameter]] =''' 1.25 |
*The continuous duty safety parameter is always the same. | *The continuous duty safety parameter is always the same. | ||
− | '''Low voltage disconnect parameter =''' 11.5 V | + | '''[[Low voltage disconnect parameter]] =''' 11.5 V |
*A simple charge controller with a pre-programmed low voltage disconnect will be used. | *A simple charge controller with a pre-programmed low voltage disconnect will be used. | ||
− | ==Energy storage sizing and selection== | + | ==[[Energy storage sizing and selection]]== |
[[File:Energystorageprocess2011132.png|thumb|right|A flowchart depicting the primary inputs and outputs of the energy storage sizing and selection process.]] | [[File:Energystorageprocess2011132.png|thumb|right|A flowchart depicting the primary inputs and outputs of the energy storage sizing and selection process.]] | ||
The [[Energy storage|energy storage system]] is sized based upon the average daily energy requirements for the system and the design parameters. The first 5 steps of this process output a suggest Ah size for the energy storage system, but then it is necessary to determine a series and parallel configuration based upon the available battery voltages and sizes. | The [[Energy storage|energy storage system]] is sized based upon the average daily energy requirements for the system and the design parameters. The first 5 steps of this process output a suggest Ah size for the energy storage system, but then it is necessary to determine a series and parallel configuration based upon the available battery voltages and sizes. | ||
Line 351: | Line 354: | ||
|} | |} | ||
− | ==Minimum PV source size== | + | ==[[Minimum PV source size]]== |
The size of the [[PV module|PV source]], which is determined based upon the [[Load evaluation|load evaluation]] and [[Weather and solar resource evaluation|weather and solar resource evaluation]] will determine the necessary size of the charge controller. The charge controller must be selected at the same time as the PV source as the [[Charge controller#Charge controller types|charge controller type]] - PWM or MPPT - will also determine the possible configurations of PV modules. | The size of the [[PV module|PV source]], which is determined based upon the [[Load evaluation|load evaluation]] and [[Weather and solar resource evaluation|weather and solar resource evaluation]] will determine the necessary size of the charge controller. The charge controller must be selected at the same time as the PV source as the [[Charge controller#Charge controller types|charge controller type]] - PWM or MPPT - will also determine the possible configurations of PV modules. | ||
Line 405: | Line 408: | ||
A PWM charge controller is a reliable, low-cost option for a small system like this. | A PWM charge controller is a reliable, low-cost option for a small system like this. | ||
− | ==PWM charge controller sizing and selection== | + | ==[[PWM charge controller sizing and selection]]== |
This system will use a PWM charge controller. The charge controller and PV source must be sized together. | This system will use a PWM charge controller. The charge controller and PV source must be sized together. | ||
Revision as of 08:58, 5 January 2021
Design will be completed in January 2021
Contents
- 1 Physical evaluation
- 2 Load evaluation
- 3 Weather and solar resource evaluation
- 4 Load and solar resource comparison
- 5 Design parameters
- 6 Energy storage sizing and selection
- 7 Minimum PV source size
- 8 PWM charge controller sizing and selection
- 8.1 Step 1: Determine PV module power rating
- 8.2 Step 2: Determine proposed module configuration
- 8.3 Step 3: Verify excess production
- 8.4 Step 4: Verify charging current
- 8.5 Step 5: Determine final number of PV modules
- 8.6 Step 6: Total PV source current
- 8.7 Step 7: Select a charge controller
- 8.8 Step 8: Determine final PV source power rating
- 9 Notes/references
Physical evaluation
Location: Pampachiri, Apurimac, Peru
GPS coordinates: 14°11'37.65"S 73°32'31.73"W
Altitude: 3378m
Description: A two story adobe home in the Peruvian Andes with only DC power needs.
Load evaluation
Step 1: Fill out DC load chart
April - September | October - March | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
# | Load | Quantity | Watts | Total watts | Duty cycle | Hours per day | Days per week | Average daily DC watt-hours | Hours per day | Days per week | Average daily DC watt-hours |
1 | 5 W LED | 6 | 5 W | 30 W | 1 | 3 hours | 7 days | 90 Wh | 3 hours | 7 days | 90 Wh |
2 | Radio | 6 W | 1 | 6 W | 1 | 5 hours | 7 days | 30 Wh | 5 hours | 7 days | 30 Wh |
3 | Cell phone | 10 W | 2 | 29 W | 1 | 1 hours | 7 days | 20 Wh | 1 hours | 7 days | 20 Wh |
- Load: The make and model or type of load.
- Quantity: The number of the particular load.
- Watts: The power rating in watts of the load.
- Total watts = Quantity × Watts
- Duty cycle = Rated or estimated duty cycle for the load. If the load has no duty cycle a value of 1 should be used. A load with a duty cycle of 20% would be inputted as .2
- Hours per day: The maximum number of hours the load(s) will be operated per day. If the load has a duty cycle 24 hours should be used.
- Days per week: The maximum number of days the load(s) will be operated per week.
- Average daily DC watt-hours = Total watts × Duty cycle × Hours per day × Days per week ÷ 7 days
Step 2: Determine DC energy demand
Total average daily DC watt-hours (April - September) | = sum of Average daily DC watt-hours for all loads for April - September |
---|---|
= 140 Wh |
Total average daily DC watt-hours (October - March) | = sum of Average daily DC watt-hours for all loads for October - March |
---|---|
= 140 Wh |
Total average daily energy demand
The total energy demand for the system is the added Average daily DC-watt hours and Average daily AC watt-hours for each time period.
Average daily watt-hours required (April - September) | = Total average daily DC watt-hours (April - October) + Total average daily AC watt-hours (April - September) |
---|---|
= 140 Wh |
Average daily watt-hours required (April - September) | = Total average daily DC watt-hours (October - March) + Total average daily AC watt-hours (October - March) |
---|---|
= 140 Wh |
Weather and solar resource evaluation
Maximum ambient temperature = 23°C
Minimum ambient temperature = 2°C
Maximum indoor temperature = 20°C
Minimum indoor temperature = 10°C
Load and solar resource comparison
Step 1: Determine monthly ratio of energy demand to solar resource
Month | Average monthly insolation | Total average daily energy demand | Ratio |
---|---|---|---|
January | 193.85 kWh/m² | 140 Wh | .722 |
February | 162.2 kWh/m² | 140 Wh | .86 |
March | 179.81 kWh/m² | 140 Wh | .78 |
April | 174.98 kWh/m² | 140 Wh | .8 |
May | 214.31 kWh/m² | 140 Wh | .65 |
June | 200.05 kWh/m² | 140 Wh | .7 |
July | 210.35 kWh/m² | 140 Wh | .67 |
August | 229.96 kWh/m² | 140 Wh | .61 |
September | 126.87 kWh/m² | 140 Wh | 1.1 |
October | 214.82 kWh/m² | 140 Wh | .65 |
November | 212.91 kWh/m² | 140 Wh | .66 |
December | 176.98 kWh/m² | 140 Wh | .79 |
- Month: The month of the year.
- Average monthly insolation: Solar resource data obtained for the location from Weather and solar resource data sources.
- Total average daily energy demand for the month from the load evaluation.
- Ratio = Total average daily energy demand ÷ Average monthly insolation
Step 2: Determine design values
Design daily insolation | = Average monthly insolation from month with the highest ratio ÷ 30 |
---|---|
= 126.87 kWh/m² ÷ 30 = 4.23 kWh/m² |
Design daily watt-hours required | = Total average daily energy demand from month with the highest ratio |
---|---|
= 140 Wh |
Design parameters
System voltage parameter = 12 V
- The system, based upon the load evaluation, will be relatively small. A 12 V system makes the most sense.
Irradiance safety parameter = 1.25
- The irradiance safety parameter is always the same.
Continuous duty safety parameter = 1.25
- The continuous duty safety parameter is always the same.
Low voltage disconnect parameter = 11.5 V
- A simple charge controller with a pre-programmed low voltage disconnect will be used.
Energy storage sizing and selection
The energy storage system is sized based upon the average daily energy requirements for the system and the design parameters. The first 5 steps of this process output a suggest Ah size for the energy storage system, but then it is necessary to determine a series and parallel configuration based upon the available battery voltages and sizes.
Step 1: Determine depth of discharge parameter For this project a depth of discharge of .5 (40%) is a good compromise.
- Depth of discharge = .5
Step 2: Determine days of autonomy parameter The home is used daily and providing lighting is very important, but at the same time the budget for the project is limited. The users are willing to adjust their consumption during periods of poor weather according to the state of charge of the energy storage system.
- Days of autonomy = 2
Step 3: Determine battery temperature correction factor The minimum indoor temperature was determined to be 10°C. An AGM battery will be used to avoid regular maintenance.
- Battery temperature correction factor = 1.08
Correction factors for various battery types:[1]
Temperature | FLA | AGM | Gel |
---|---|---|---|
25°C | 1.00 | 1.00 | 1.00 |
20°C | 1.06 | 1.03 | 1.04 |
15°C | 1.13 | 1.05 | 1.07 |
10°C | 1.19 | 1.08 | 1.11 |
5°C | 1.29 | 1.14 | 1.18 |
0°C | 1.39 | 1.20 | 1.25 |
-5°C | 1.55 | 1.28 | 1.34 |
-10°C | 1.70 | 1.35 | 1.42 |
Step 4: Calculate total Ah required
Total Ah required | = Average daily Watt-hours required ÷ System voltage parameter × Battery temperature correction factor (step 3) × Days of autonomy parameter (Step 2) ÷ Depth of discharge parameter (Step 1) |
---|---|
= 140 Wh ÷ 12 V × 1.08 × 2 days ÷ .4 = 43 Ah |
Step 5: Calculate number of batteries in series
A 12 V battery is ideal for a system of this size.
Batteries in series | = System voltage parameter ÷ Chosen battery voltage |
---|---|
= 12 V ÷ 12 V | |
= 1 × 12 V battery is sufficient |
Step 6: Calculate number of batteries in parallel
In Peru 12 V AGM batteries are widely available in 40 Ah, 55 Ah and 75 Ah sizes. 55 Ah is too small, so a 75 Ah battery will have to be used.
Batteries in parallel | = Total Ah required (step 4) ÷ Chosen battery Ah rating |
---|---|
= 43 Ah ÷ 55 Ah = .78 | |
= Round up to 1 × 55 Ah battery. |
https://www.mkbattery.com/application/files/2715/6158/6466/8A22NF-DEKA_Spec_Sheet.pdf
Step 7: Calculate final Ah capacity
Final Ah capacity | = Number of batteries in parallel (Step 7) × Chosen battery Ah rating |
---|---|
= 1 battery in parallel × 55 Ah = 55Ah |
Minimum PV source size
The size of the PV source, which is determined based upon the load evaluation and weather and solar resource evaluation will determine the necessary size of the charge controller. The charge controller must be selected at the same time as the PV source as the charge controller type - PWM or MPPT - will also determine the possible configurations of PV modules.
In this phase of the design process, more than in any other phase, it is necessary to explore different designs using PV module, series and parallel wiring configurations, and charge controllers in order to achieve the highest performance at the lowest cost possible. This phase may have to be performed several times.
An off-grid PV system that depends upon the PV as its single charging source requires an array that is sufficiently sized to be able to generate sufficient energy to both meet the energy needs of the users and to recharge the energy storage system under less than ideal conditions. Any sizing decisions should therefore lean towards an oversized PV source.
Step 1: Deteremine PV source loss parameters
The PV module(s) will be mounted on a pole mount system.
- Module degradation parameter = .94
- Shading loss parameter = .95
- Soiling loss parameter = .97
- Wiring loss parameter = .96
- Module mismatch parameter = 1
- Mounting system temperature adder = 20°C for a pole mount
- PV source temperature loss parameter = -.48%/°C
PV source temperature loss parameter = 1 + (Maximum ambient temperature + Mounting system temperature adder - 25°C) x Temperature coefficient of max power %/°C ÷ 100 = 1 + (23°C + 20°C - 25°C) x -.48%/°C ÷ 100 = .91
Total PV source loss parameter = Module degradation parameter × Shading loss parameter × Soiling loss parameter × Wiring loss parameter × Module mismatch parameter × PV source temperature loss parameter = .94 × .95 × .97 × .96 × 1 × .91 = .76
Step 2: Charge controller efficiency parameter
All charge controllers lose a certain percentage of all energy that is produced as heat as it is transferred to the energy storage system and loads. For both PWM and MPPT charge controllers a value of .98 (98% efficient) can be used.
Step 3: Energy storage efficiency parameter
The system will use an AGM battery, which is a VRLA battery.
- Valve-regulated lead acid (VRLA) battery efficiency = .85 (85% efficient)
Step 4: Deteremine minimum size of the PV source
Minimum PV source size | = Design daily watt-hours required ÷ Design daily insolation ÷ Total PV source loss parameter (Step 1) ÷ Charge controller efficiency parameter (Step 2) ÷ Energy storage efficiency parameter (Step 3) |
---|---|
= 140 Wh ÷ 4.23 kWh/m² ÷ .76 ÷ .98 ÷ .85 = 52 W |
Step 5: Determine charge controller type
There are two different charge controller types - pulse width modulation (PWM) and maximum power point tracking (MPPT) - each of which has advantages and disadvantages that are are detailed in Charge controller types. Two separate designs may be performed with each type of charge controller to determine the best system design. The current and voltage rating of the charge controller will be determined when in either PWM charge controller sizing and selection or MPPT charge controller sizing and selection.
A PWM charge controller is a reliable, low-cost option for a small system like this.
PWM charge controller sizing and selection
This system will use a PWM charge controller. The charge controller and PV source must be sized together.
Step 1: Determine PV module power rating
The chosen System voltage limits the choices of modules and configurations that are possible with a PWM charge controller. A 12 volt system requires 1 ×36-cell module per string. The minimum size was determined to be 52 W. A 80 W polycrystalline PV module will be used for the design.
PV module power rating | = 80 W |
---|
Number of modules in series | = 1 module |
---|
Step 2: Determine proposed module configuration
This calculation will give a minimum number of PV modules - the result should always be rounded up. Different modules sizes and configurations can be explored to find the optimal design.
Minimum number of PV modules | = Minimum PV source size ÷ PV module power rating (Step 1) |
---|---|
= 52 W ÷ 80 W = .65 | |
= 1 × 80 W module. |
Minimum number of modules in parallel | = Minimum number of PV modules ÷ Number of modules in series (Step 1) |
---|---|
= 1 ÷ 1 = 1 |
Step 3: Verify excess production
During periods of poor weather or low solar resource, an off-grid PV system is designed to discharge the battery to a certain depth of discharge which can leave the energy storage system depleted. It is important that the energy storage system is brought back up to a full state of charge in short period of time or the cycle life of the batteries will be reduced. The PV array therefore must be sized to generate sufficient excess energy, while continuing to meet all of the power needs from the Load evaluation. OSSP recommends that the array be sufficiently sized to reach a full state of charge within a week or that the system incorporate a generator to ensure adequate charging.
Proposed PV source low insolation production | = PV module power rating (Step 1) × Minimum number of PV modules (Step 2) × Total PV source loss parameter × Design insolation × Charge controller efficiency parameter × Energy storage efficiency parameter |
---|---|
= 80 W × 1 × .76 × 4.23 kWh/m² × .98 × .85 = 214 Wh |
Daily excess production in Ah | = (Proposed PV source low insolation production - Average daily watt-hours required) ÷ System voltage parameter |
---|---|
= (214 Wh - 140 Wh) ÷ 12 volts = 6.2 Ah |
Ah used at full depth of discharge | = Final Ah capacity × Depth of discharge parameter |
---|---|
= 55Ah × .5 = 27.5 Ah |
Time to reach full state of charge | = Ah used at full depth of discharge ÷ Daily excess production in Ah |
---|---|
= 27.5 Ah ÷ 6.2 Ah = 4.4 days |
The battery will be able to reach full state of charge while using loads in 4.4 days, which is less than the maximum of 7 days. The design is okay.
Step 4: Verify charging current
Lead acid batteries last longer and perform better when they are regularly recharged with a current in a certain range - typically between .05-.13 (5-13%) of their C/20 rating.[2] If a system uses many loads during the day, this will limit the available charging current for the energy storage system and should be taken into account by increasing the PV source size. The maximum charging current for most lead acid batteries is between .13 (13%) and .2 (20%) of the C/20 rate.[3] Most designs should have a charge rate between 5-10% - closer to 10% if the system is used heavily during the day. It is necessary to consult the manual or manufacturer for recommended maximum and minimum charging currents.
These calculations are performed with the Ah rating of the total energy storage system.
Minimum required charge current | = Final Ah capacity × .05 |
---|---|
= 55 Ah × .05 = 2.75 A |
It is necessary to check the minimum required charge current against the available charge current from the proposed PV source power rating.
Available charging current | = Maximum power current (Imp) × Minimum number of PV modules in parallel |
---|---|
= 4.4 A × 1 = 4.4 A |
Percentage of C/20 rate | = Available charging current ÷ Final Ah capacity |
---|---|
= 4.4 A ÷ 55 Ah = .08 |
The PV source can supply .08 (8%) of the C/20 current rating of the energy storage system, which is more than .05 (5%) and less than .2 (20%). The PV source configuration is okay.
Step 5: Determine final number of PV modules
Determine a final number of modules and a series/parallel configuration that can meet the requirements of Step 1, Step 2, Step 3, and Step 4.
Final number of PV modules | = |
---|---|
= 1 |
Final number of PV modules in series | = |
---|---|
= 1 |
Final number of PV modules in parallel | = |
---|---|
= 1 |
Step 6: Total PV source current
This calculation will give a minimum current rating to use as a basis for selecting the charge controller. The Isc rating of the PV module can be found on its specifications sheet.
Total PV source current | = Final number of PV modules (Step 5) × Isc rating of chosen module (Step 1) × Irradiance safety parameter |
---|---|
= 1 × 4.85 A × 1.25 = 6.1 A |
Step 7: Select a charge controller
A single charge controller is the simplest and cheapest option, but for larger systems multiple charge controllers often are used in parallel. The final chosen charge controller should:
- Function at the system voltage.
- The charge controller(s) should have a total current rating that is larger than the minimum current rating (Step 6).
The result of the following equation should always be rounded up.
Number of charge controllers | = Total PV source current (Step 6) ÷ Chosen charge controller current rating |
---|---|
= 6.1 A ÷ 10 A = .61 = 1 (rounded up to 1 charge controller) |
Step 8: Determine final PV source power rating
The total power rating of the PV source can be calculated by multiplying the power rating of the chosen PV module by the final number of PV modules (Step 5).
PV source power rating | = PV module power rating (Step 1) × Final number of PV modules in parallel (Step 5) |
---|---|
= 80 W × 1 = 80 W |
Notes/references
- ↑ Trojan Battery Company - Battery Sizing Guidelines https://www.trojanbattery.com/pdf/TRJN0168_BattSizeGuideFL.pdf
- ↑ Trojan Battery Company - User's Guide https://www.trojanbattery.com/pdf/TrojanBattery_UsersGuide.pdf
- ↑ Rolls Battery - Battery User Manual https://rollsbattery.com/public/docs/user_manual/Rolls_Battery_Manual.pdf