Difference between revisions of "Energy storage sizing and selection/es"

From Open Source Solar Project
Jump to navigation Jump to search
(Created page with "*Si un sistema está diseñado para una ubicación donde el clima o el recurso solar es muy variable, se debe aume...")
(Created page with "*Si un sistema está destinado a proporcionar energía en una ubicación donde los usuarios ajustarán su consumo de energía de acuerdo con el clima o si se usa con poca frec...")
Line 25: Line 25:
 
*Si un sistema está diseñado para una ubicación donde el [[Special:MyLanguage/Weather and solar resource evaluation|clima o el recurso solar]] es muy variable, se debe aumentar el valor de los días de autonomía. Es posible usar [[Special:MyLanguage/Resources|recursos con datos meteorologicos]] para examinar la frecuencia con la que ocurren los períodos de mal tiempo y su duración en una ubicación determinada.
 
*Si un sistema está diseñado para una ubicación donde el [[Special:MyLanguage/Weather and solar resource evaluation|clima o el recurso solar]] es muy variable, se debe aumentar el valor de los días de autonomía. Es posible usar [[Special:MyLanguage/Resources|recursos con datos meteorologicos]] para examinar la frecuencia con la que ocurren los períodos de mal tiempo y su duración en una ubicación determinada.
  
*If a system is intended to provide power at a location where the users will adjust their energy consumption according to the weather or that is used infrequently, fewer days of autonomy can be built into the system. A value of 2 days of autonomy may be appropriate in these cases as long as there is a sufficiently sized [[Special:MyLanguage/PV module|PV source]] or an additional form of generation.
+
*Si un sistema está destinado a proporcionar energía en una ubicación donde los usuarios ajustarán su consumo de energía de acuerdo con el clima o si se usa con poca frecuencia, se pueden incorporar al sistema menos días de autonomía. Un valor de 2 días de autonomía puede ser apropiado en estos casos siempre que haya una [[Special:MyLanguage/PV module|fuente FV]] de tamaño suficiente o una forma adicional de generación.
  
 
*If a system is intended to provide power at a location that must operate continually, like at a health clinic, it is recommended that a significant number of days of autonomy are built into the system or that an additional form of generation, like a generator, is added to the system. An energy storage system with 5-7 days of autonomy for a health clinic will often be quite substantial in size, difficult to charge properly, and costly. Therefore, a backup generator should be considered in this case.  
 
*If a system is intended to provide power at a location that must operate continually, like at a health clinic, it is recommended that a significant number of days of autonomy are built into the system or that an additional form of generation, like a generator, is added to the system. An energy storage system with 5-7 days of autonomy for a health clinic will often be quite substantial in size, difficult to charge properly, and costly. Therefore, a backup generator should be considered in this case.  

Revision as of 14:06, 1 April 2021

Other languages:
English • ‎español
Un diagrama de flujo que muestra las entradas y salidas primarias del proceso de selección y dimensionamiento del almacenamiento de energía.

El sistema de almacenamiento de energía tiene un tamaño basado en los requisitos de energía diarios promedio para el sistema y varios parámetros clave. Los primeros 5 pasos de este proceso generan un tamaño Ah sugerido para el sistema de almacenamiento de energía, pero luego es necesario determinar una configuración en serie y en paralelo en función de las tensiones y tamaños de batería disponibles.

Paso 1: Determinar el valor para el parámetro de profundidad de descarga

El parámetro de profundidad de descarga determina el porcentaje del sistema de almacenamiento de energía que se considera utilizable para el diseño del sistema . El valor de profundidad de descarga elegido afecta la capacidad, ciclos de vida y el costo del sistema de almacenamiento de energía. Las baterías de plomo ácido no tolera las descargas profundas regulares, por lo que se suelen utilizar valores entre .4-.5 (40-50%). A menudo se cita un valor de .5 como el que proporciona el mayor número de ciclos en relación con el costo, pero hay consideraciones adicionales que deben tenerse en cuenta para determinar la profundidad del valor de descarga:

  • Un sistema que se prevé que se utilizará mucho puede justificar un valor más conservador.
  • Un sistema que se encuentra en una ubicación de difícil acceso puede garantizar un valor más conservador.

Paso 2: Determinar el valor para el parámetro de días de autonomía

El parámetro de días de autonomía determina la cantidad de días que el sistema podrá satisfacer las necesidades energéticas sin carga de ningún tipo. Un día de autonomía proporciona suficiente capacidad de almacenamiento de energía para proporcionar energía para las cargas del análisis de cargas durante un día sin ninguna carga adicional. Cada día de autonomía adicional agrega un día adicional de capacidad de almacenamiento de energía. Por ejemplo:

  • Un batería de plomo ácido de 205 Ah x 1 día de autonomía = 205 Ah
  • Un batería de plomo ácido de 205 Ah x 2 días de autonomía = 410 Ah
  • Un batería de plomo de 205 Ah x 3 días de autonomía = 615 Ah

El valor que se elige para este parámetro depende en gran medida de la variabilidad del análisis del tiempo y recurso solar, el uso previsto del sistema y el presupuesto. Casi siempre es preferible tener almacenamiento adicional, por lo tanto, el presupuesto a menudo se convierte en la restricción principal. Hay varias consideraciones que intervienen en la determinación del valor que es apropiado para un diseño en particular:

  • Si un sistema está diseñado para una ubicación donde el clima o el recurso solar es muy variable, se debe aumentar el valor de los días de autonomía. Es posible usar recursos con datos meteorologicos para examinar la frecuencia con la que ocurren los períodos de mal tiempo y su duración en una ubicación determinada.
  • Si un sistema está destinado a proporcionar energía en una ubicación donde los usuarios ajustarán su consumo de energía de acuerdo con el clima o si se usa con poca frecuencia, se pueden incorporar al sistema menos días de autonomía. Un valor de 2 días de autonomía puede ser apropiado en estos casos siempre que haya una fuente FV de tamaño suficiente o una forma adicional de generación.
  • If a system is intended to provide power at a location that must operate continually, like at a health clinic, it is recommended that a significant number of days of autonomy are built into the system or that an additional form of generation, like a generator, is added to the system. An energy storage system with 5-7 days of autonomy for a health clinic will often be quite substantial in size, difficult to charge properly, and costly. Therefore, a backup generator should be considered in this case.
  • The days of autonomy value that is chosen will be used to size the energy storage system to meet energy demand when the battery bank is new, but the storage capacity of the energy storage system will gradually decline over time. Therefore, oversizing a battery bank to take this into account is a good idea.

Step 3: Determine battery temperature correction factor

The temperature of lead acid batteries has a significant effect upon performance. When lead acid batteries reach a temperature below 25°C, their usable capacity begins to decline. This can lead to batteries being deeply discharged and damaged, therefore the size of the energy storage system should be adjusted to ensure that there is adequate energy available at the minimum expected indoor temperature for the location.

Correction factors for various battery types:[1]

Temperature FLA AGM Gel
25°C 1.00 1.00 1.00
20°C 1.06 1.03 1.04
15°C 1.13 1.05 1.07
10°C 1.19 1.08 1.11
5°C 1.29 1.14 1.18
0°C 1.39 1.20 1.25
-5°C 1.55 1.28 1.34
-10°C 1.70 1.35 1.42

Step 4: Calculate total Ah required

Total Ah required = Design daily Watt-hours required ÷ DC system voltage × Battery temperature correction factor (Step 3) × Days of autonomy parameter (Step 2) ÷ Depth of discharge parameter (Step 1)

Step 5: Calculate number of batteries in series

Lead acid batteries are commonly available in 2V, 4V, 6V, 12V designs that can be wired in series to achieve a 12V, 24V, or 48V system voltage. See Battery wiring for more information on how to properly configure a battery bank. With small systems 12V batteries are the standard, but as system size increases lower battery voltages lead to more storage with fewer parallel strings, which is a better design. Deep cycle batteries with voltages below 12V can be difficult to find in some locations.

Batteries in series = DC system voltage ÷ Chosen battery voltage

Step 6: Calculate number of parallel battery circuits

Lead acid batteries are available in a variety of Ah ratings. They can be wired in parallel to achieve the desired total Ah of storage for the system. See Battery wiring for more information on how to properly configure a battery bank. The result of this calculation should be rounded up, meaning that if the number of parallel strings is more than 1, then 2 parallel strings are required. The other option would be to use a battery with a higher Ah rating.

Number of parallel battery circuits = Total Ah required (Step 4) ÷ Chosen battery Ah rating

Step 7: Calculate final Ah capacity

The final Ah capacity of the battery bank is the chosen battery Ah rating multiplied by the number of parallel strings. This value is important for other calculations in the design process.

Final Ah capacity = Number of parallel battery circuits (Step 6) × Chosen battery Ah rating

Notes/references

  1. Trojan Battery Company - Battery Sizing Guidelines https://www.trojanbattery.com/pdf/TRJN0168_BattSizeGuideFL.pdf